Theorem —The Comparison Test Let $\sum a_n$, $\sum c_n$, and $\sum d_n$ be series with nonnegative terms. Suppose that for some integer N $$d_n \le a_n \le c_n$$ for all $n > N$. - (a) If $\sum c_n$ converges, then $\sum a_n$ also converges. - (b) If $\sum d_n$ diverges, then $\sum a_n$ also diverges. # **Example:** (a) The series $$\sum_{n=1}^{\infty} \frac{5}{5n-1}$$ diverges because its nth term $$\frac{5}{5n-1} = \frac{1}{n-\frac{1}{5}} > \frac{1}{n}$$ is greater than the *n*th term of the divergent harmonic series. (b) The series $$\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$ converges because its terms are all positive and less than or equal to the corresponding terms of $$1 + \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots$$ The geometric series on the left converges and we have $$1 + \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{1 - (1/2)} = 3.$$ # **Limit Comparison Test** Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer). - 1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge. - 2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges. - 3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges. ## **Example:** Which of the following series converge, and which diverge? (a) $$\frac{3}{4} + \frac{5}{9} + \frac{7}{16} + \frac{9}{25} + \dots = \sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2} = \sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$ **(b)** $$\frac{1}{1} + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$ (c) $$\frac{1+2\ln 2}{9} + \frac{1+3\ln 3}{14} + \frac{1+4\ln 4}{21} + \dots = \sum_{n=2}^{\infty} \frac{1+n\ln n}{n^2+5}$$ Sol: We apply the Limit Comparison Test to each series. (a) Let $a_n = (2n + 1)/(n^2 + 2n + 1)$. For large n, we expect a_n to behave like $2n/n^2 = 2/n$ since the leading terms dominate for large n, so we let $b_n = 1/n$. Since $$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges}$$ and $$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + n}{n^2 + 2n + 1} = 2,$$ $\sum a_n$ diverges by Part 1 of the Limit Comparison Test. We could just as well have taken $b_n = 2/n$, but 1/n is simpler. (b) Let $a_n = 1/(2^n - 1)$. For large n, we expect a_n to behave like $1/2^n$, so we let $b_n = 1/2^n$. Since $$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$$ converges $$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{2^n}{2^n - 1}$$ $$= \lim_{n \to \infty} \frac{1}{1 - (1/2^n)}$$ = 1. $\sum a_n$ converges by Part 1 of the Limit Comparison Test. (c) Let $a_n = (1 + n \ln n)/(n^2 + 5)$. For large n, we expect a_n to behave like $(n \ln n)/n^2 = (\ln n)/n$, which is greater than 1/n for $n \ge 3$, so we let $b_n = 1/n$. Since $$\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n} \text{ diverges}$$ and $$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n + n^2 \ln n}{n^2 + 5}$$ $$= \infty.$$ $\sum a_n$ diverges by Part 3 of the Limit Comparison Test. ### **The Absolute Convergence Test** If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converge, the converse is not true # **Example:** (a) For $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots$, the corresponding series of absolute values is the convergent series $$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$ The original series converges because it converges absolutely. (b) For $\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{\sin 1}{1} + \frac{\sin 2}{4} + \frac{\sin 3}{9} + \cdots$, which contains both positive and negative terms, the corresponding series of absolute values is $$\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right| = \frac{\left| \sin 1 \right|}{1} + \frac{\left| \sin 2 \right|}{4} + \cdots,$$ which converges by comparison with $\sum_{n=1}^{\infty} (1/n^2)$ because $|\sin n| \le 1$ for every n. The original series converges absolutely; therefore it converges. #### The Ratio Test Let $\sum a_n$ be any series and suppose that $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$. Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$. ### Example Investigate the convergence of the following series. (a) $$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$ (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$ (c) $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$ #### Sol: (a) For the series $\sum_{n=0}^{\infty} (2^n + 5)/3^n$, $$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(2^{n+1} + 5)/3^{n+1}}{(2^n + 5)/3^n} = \frac{1}{3} \cdot \frac{2^{n+1} + 5}{2^n + 5} = \frac{1}{3} \cdot \left(\frac{2 + 5 \cdot 2^{-n}}{1 + 5 \cdot 2^{-n}} \right) \rightarrow \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3}.$$ The series converges absolutely (and thus converges) because $\rho = 2/3$ is less than 1. This does *not* mean that 2/3 is the sum of the series. In fact, $$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n + \sum_{n=0}^{\infty} \frac{5}{3^n} = \frac{1}{1 - (2/3)} + \frac{5}{1 - (1/3)} = \frac{21}{2}.$$ (b) If $$a_n = \frac{(2n)!}{n!n!}$$, then $a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!}$ and $$\begin{vmatrix} a_{n+1} \\ \hline a_n \end{vmatrix} = \frac{n!n!(2n+2)(2n+1)(2n)!}{(n+1)!(n+1)!(2n)!}$$ $$= \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} \rightarrow 4.$$ The series diverges because $\rho = 4$ is greater than 1. (c) If $a_n = 4^n n! n! / (2n)!$, then $$\left| \frac{a_{n+1}}{a_n} \right| = \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{4^n n! n!}$$ $$= \frac{4(n+1)(n+1)}{(2n+2)(2n+1)} = \frac{2(n+1)}{2n+1} \to 1.$$ Because the limit is $\rho = 1$, we cannot decide from the Ratio Test whether the series converges. When we notice that $a_{n+1}/a_n = (2n+2)/(2n+1)$, we conclude that a_{n+1} is always greater than a_n because (2n+2)/(2n+1) is always greater than 1. Therefore, all terms are greater than or equal to $a_1 = 2$, and the *n*th term does not approach zero as $n \to \infty$. The series diverges. #### The Root Test Let $\sum a_n$ be any series and suppose that $$\lim_{n\to\infty} = \sqrt[n]{|a_n|} = \rho.$$ Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$. ### **Example:** Which of the following series converge, and which diverge? (a) $$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$ (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$ (c) $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$ Solution We apply the Root Test to each series, noting that each series has positive terms. (a) $$\sum_{n=1}^{\infty} \frac{n^2}{2^n} \text{ converges because } \sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{\left(\sqrt[n]{n}\right)^2}{2} \to \frac{1^2}{2} < 1.$$ (b) $$\sum_{n=1}^{\infty} \frac{2^n}{n^3} \text{ diverges because } \sqrt[n]{\frac{2^n}{n^3}} = \frac{2}{\left(\sqrt[n]{n}\right)^3} \to \frac{2}{1^3} > 1.$$ (c) $$\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$$ converges because $\sqrt[n]{\left(\frac{1}{1+n}\right)^n} = \frac{1}{1+n} \to 0 < 1$. # **Alternating Series** A series in which the terms are alternately positive and negative is an alternating series. # **Example:** $$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots + \frac{(-1)^{n+1}}{n} + \dots$$ $$-2 + 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n}4}{2^n} + \dots$$ $$1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1}n + \dots$$ #### **Theorem** $$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$ converges if all three of the following conditions are satisfied: - 1. The u_n 's are all positive. - **2.** The positive u_n 's are (eventually) nonincreasing: $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N. - 3. $u_n \rightarrow 0$. #### Example The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$ clearly satisfies the three requirements of Theorem with N=1; it therefore converges. # 1.6 Power Series and Convergence **DEFINITIONS** A power series about x = 0 is a series of the form $$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$ (1) A power series about x = a is a series of the form $$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots$$ (2) in which the center a and the coefficients $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants. ### **Example:** $$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots.$$ This is the geometric series with first term 1 and ratio x. It converges to 1/(1-x) for |x| < 1. We express this fact by writing $$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, \quad -1 < x < 1. \tag{3}$$ ### **Example:** $$1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 + \dots + \left(-\frac{1}{2}\right)^n (x - 2)^n + \dots$$ (4) matches Equation (2) with a=2, $c_0=1$, $c_1=-1/2$, $c_2=1/4$, ..., $c_n=(-1/2)^n$. This is a geometric series with first term 1 and ratio $r=-\frac{x-2}{2}$. The series converges for $\left|\frac{x-2}{2}\right|<1$ or 0< x<4. The sum is $$\frac{1}{1-r} = \frac{1}{1+\frac{x-2}{2}} = \frac{2}{x},$$ SO $$\frac{2}{x} = 1 - \frac{(x-2)}{2} + \frac{(x-2)^2}{4} - \dots + \left(-\frac{1}{2}\right)^n (x-2)^n + \dots, \qquad 0 < x < 4.$$ ### **Example:** For what values of **x** do the following power series converge? (a) $$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$ **(b)** $$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$$ (c) $$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$ (d) $$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \cdots$$ Solution Apply the Ratio Test to the series $\sum |u_n|$, where u_n is the *n*th term of the power series in question. (a) $$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{n+1}}{n+1} \cdot \frac{n}{x} \right| = \frac{n}{n+1} |x| \longrightarrow |x|.$$ The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the *n*th term does not converge to zero. At x = 1, we get the alternating harmonic series $1 - 1/2 + 1/3 - 1/4 + \cdots$, which converges. At x = -1, we get -1 - 1/2 - 1/ $1/3 - 1/4 - \cdots$, the negative of the harmonic series; it diverges. Series (a) converges for $-1 < x \le 1$ and diverges elsewhere. $$0$$ 1 0 1 x **(b)** $$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{2n+1}}{2n+1} \cdot \frac{2n-1}{x^{2n-1}} \right| = \frac{2n-1}{2n+1} x^2 \rightarrow x^2.$$ $2(n+1)-1=2n+1$ The series converges absolutely for $x^2 < 1$. It diverges for $x^2 > 1$ because the *n*th term does not converge to zero. At x = 1 the series becomes $1 - 1/3 + 1/5 - 1/7 + \cdots$, which converges by the Alternating Series Theorem. It also converges at x = -1 because it is again an alternating series that satisfies the conditions for convergence. The value at x = -1 is the negative of the value at x = 1. Series (b) converges for $-1 \le x \le 1$ and diverges elsewhere. (c) $$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0 \text{ for every } x.$$ $\frac{n!}{(n+1)!} = \frac{1 \cdot 2 \cdot 3 \cdots n}{1 \cdot 2 \cdot 3 \cdots n \cdot (n+1)}$ The series converges absolutely for all x. (d) $$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = (n+1) |x| \to \infty \text{ unless } x = 0.$$ The series diverges for all values of x except x = 0. ## 1.7 Taylor and Maclaurin Series **DEFINITIONS** Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by** f at x = a is $$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$ The Maclaurin series of f is the Taylor series generated by f at x = 0, or $$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$ # **Example** Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the series converge to 1 > x? Solution We need to find f(2), f'(2), f''(2), Taking derivatives we get $$f(x) = x^{-1}$$, $f'(x) = -x^{-2}$, $f''(x) = 2!x^{-3}$, ..., $f^{(n)}(x) = (-1)^n n! x^{-(n+1)}$ so that $$f(2) = 2^{-1} = \frac{1}{2}, \quad f'(2) = -\frac{1}{2^2}, \quad \frac{f''(2)}{2!} = 2^{-3} = \frac{1}{2^3}, \quad \cdots, \quad \frac{f^{(n)}(2)}{n!} = \frac{(-1)^n}{2^{n+1}}.$$ The Taylor series is $$f(2) + f'(2)(x - 2) + \frac{f''(2)}{2!}(x - 2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x - 2)^n + \dots$$ $$= \frac{1}{2} - \frac{(x - 2)}{2^2} + \frac{(x - 2)^2}{2^3} - \dots + (-1)^n \frac{(x - 2)^n}{2^{n+1}} + \dots$$ This is a geometric series with first term 1/2 and ratio r = -(x - 2)/2. It converges absolutely for |x - 2| < 2 and its sum is $$\frac{1/2}{1+(x-2)/2} = \frac{1}{2+(x-2)} = \frac{1}{x}.$$ In this example the Taylor series generated by f(x) = 1/x at a = 2 converges to 1/x for |x - 2| < 2 or 0 < x < 4. #### **Example:** Find the Taylor series generated by $f(x) = \cos x$ at x = 0. Solution The cosine and its derivatives are $$f(x) = \cos x,$$ $f'(x) = -\sin x,$ $f''(x) = -\cos x,$ $f^{(3)}(x) = \sin x,$ \vdots \vdots \vdots $f^{(2n)}(x) = (-1)^n \cos x,$ $f^{(2n+1)}(x) = (-1)^{n+1} \sin x.$ At x = 0, the cosines are 1 and the sines are 0, so $$f^{(2n)}(0) = (-1)^n, f^{(2n+1)}(0) = 0.$$ The Taylor series generated by f at 0 is $$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$ $$= 1 + 0 \cdot x - \frac{x^2}{2!} + 0 \cdot x^3 + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$ $$= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}.$$