Theorem —The Comparison Test

Let $\sum a_n$, $\sum c_n$, and $\sum d_n$ be series with nonnegative terms. Suppose that for some integer N

$$d_n \le a_n \le c_n$$
 for all $n > N$.

- (a) If $\sum c_n$ converges, then $\sum a_n$ also converges.
- (b) If $\sum d_n$ diverges, then $\sum a_n$ also diverges.

Example:

(a) The series

$$\sum_{n=1}^{\infty} \frac{5}{5n-1}$$

diverges because its nth term

$$\frac{5}{5n-1} = \frac{1}{n-\frac{1}{5}} > \frac{1}{n}$$

is greater than the *n*th term of the divergent harmonic series.

(b) The series

$$\sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

converges because its terms are all positive and less than or equal to the corresponding terms of

$$1 + \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots$$

The geometric series on the left converges and we have

$$1 + \sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{1 - (1/2)} = 3.$$

Limit Comparison Test

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

- 1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- 2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Example:

Which of the following series converge, and which diverge?

(a)
$$\frac{3}{4} + \frac{5}{9} + \frac{7}{16} + \frac{9}{25} + \dots = \sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2} = \sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$

(b)
$$\frac{1}{1} + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

(c)
$$\frac{1+2\ln 2}{9} + \frac{1+3\ln 3}{14} + \frac{1+4\ln 4}{21} + \dots = \sum_{n=2}^{\infty} \frac{1+n\ln n}{n^2+5}$$

Sol: We apply the Limit Comparison Test to each series.

(a) Let $a_n = (2n + 1)/(n^2 + 2n + 1)$. For large n, we expect a_n to behave like $2n/n^2 = 2/n$ since the leading terms dominate for large n, so we let $b_n = 1/n$. Since

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges}$$

and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + n}{n^2 + 2n + 1} = 2,$$

 $\sum a_n$ diverges by Part 1 of the Limit Comparison Test. We could just as well have taken $b_n = 2/n$, but 1/n is simpler.

(b) Let $a_n = 1/(2^n - 1)$. For large n, we expect a_n to behave like $1/2^n$, so we let $b_n = 1/2^n$. Since

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$$
 converges

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{2^n}{2^n - 1}$$

$$= \lim_{n \to \infty} \frac{1}{1 - (1/2^n)}$$

= 1.

 $\sum a_n$ converges by Part 1 of the Limit Comparison Test.

(c) Let $a_n = (1 + n \ln n)/(n^2 + 5)$. For large n, we expect a_n to behave like $(n \ln n)/n^2 = (\ln n)/n$, which is greater than 1/n for $n \ge 3$, so we let $b_n = 1/n$. Since

$$\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n} \text{ diverges}$$

and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n + n^2 \ln n}{n^2 + 5}$$
$$= \infty.$$

 $\sum a_n$ diverges by Part 3 of the Limit Comparison Test.

The Absolute Convergence Test

If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converge, the converse is not true

Example:

(a) For $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \cdots$, the corresponding series of absolute values is the convergent series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$

The original series converges because it converges absolutely.

(b) For $\sum_{n=1}^{\infty} \frac{\sin n}{n^2} = \frac{\sin 1}{1} + \frac{\sin 2}{4} + \frac{\sin 3}{9} + \cdots$, which contains both positive and negative terms, the corresponding series of absolute values is

$$\sum_{n=1}^{\infty} \left| \frac{\sin n}{n^2} \right| = \frac{\left| \sin 1 \right|}{1} + \frac{\left| \sin 2 \right|}{4} + \cdots,$$

which converges by comparison with $\sum_{n=1}^{\infty} (1/n^2)$ because $|\sin n| \le 1$ for every n. The original series converges absolutely; therefore it converges.

The Ratio Test

Let $\sum a_n$ be any series and suppose that $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$.

Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$.

Example

Investigate the convergence of the following series.

(a)
$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2n)!}{n!n!}$ (c) $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$

Sol:

(a) For the series $\sum_{n=0}^{\infty} (2^n + 5)/3^n$,

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(2^{n+1} + 5)/3^{n+1}}{(2^n + 5)/3^n} = \frac{1}{3} \cdot \frac{2^{n+1} + 5}{2^n + 5} = \frac{1}{3} \cdot \left(\frac{2 + 5 \cdot 2^{-n}}{1 + 5 \cdot 2^{-n}} \right) \rightarrow \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3}.$$

The series converges absolutely (and thus converges) because $\rho = 2/3$ is less than 1. This does *not* mean that 2/3 is the sum of the series. In fact,

$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n} = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n + \sum_{n=0}^{\infty} \frac{5}{3^n} = \frac{1}{1 - (2/3)} + \frac{5}{1 - (1/3)} = \frac{21}{2}.$$

(b) If
$$a_n = \frac{(2n)!}{n!n!}$$
, then $a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!}$ and

$$\begin{vmatrix} a_{n+1} \\ \hline a_n \end{vmatrix} = \frac{n!n!(2n+2)(2n+1)(2n)!}{(n+1)!(n+1)!(2n)!}$$
$$= \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} \rightarrow 4.$$

The series diverges because $\rho = 4$ is greater than 1.

(c) If $a_n = 4^n n! n! / (2n)!$, then

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{4^n n! n!}$$
$$= \frac{4(n+1)(n+1)}{(2n+2)(2n+1)} = \frac{2(n+1)}{2n+1} \to 1.$$

Because the limit is $\rho = 1$, we cannot decide from the Ratio Test whether the series converges. When we notice that $a_{n+1}/a_n = (2n+2)/(2n+1)$, we conclude that a_{n+1} is always greater than a_n because (2n+2)/(2n+1) is always greater than 1. Therefore, all terms are greater than or equal to $a_1 = 2$, and the *n*th term does not approach zero as $n \to \infty$. The series diverges.

The Root Test

Let $\sum a_n$ be any series and suppose that

$$\lim_{n\to\infty} = \sqrt[n]{|a_n|} = \rho.$$

Then (a) the series *converges absolutely* if $\rho < 1$, (b) the series *diverges* if $\rho > 1$ or ρ is infinite, (c) the test is *inconclusive* if $\rho = 1$.

Example:

Which of the following series converge, and which diverge?

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^3}$ (c) $\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$

Solution We apply the Root Test to each series, noting that each series has positive terms.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} \text{ converges because } \sqrt[n]{\frac{n^2}{2^n}} = \frac{\sqrt[n]{n^2}}{\sqrt[n]{2^n}} = \frac{\left(\sqrt[n]{n}\right)^2}{2} \to \frac{1^2}{2} < 1.$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^3} \text{ diverges because } \sqrt[n]{\frac{2^n}{n^3}} = \frac{2}{\left(\sqrt[n]{n}\right)^3} \to \frac{2}{1^3} > 1.$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1}{1+n}\right)^n$$
 converges because $\sqrt[n]{\left(\frac{1}{1+n}\right)^n} = \frac{1}{1+n} \to 0 < 1$.

Alternating Series

A series in which the terms are alternately positive and negative is an alternating series.

Example:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots + \frac{(-1)^{n+1}}{n} + \dots$$

$$-2 + 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^{n}4}{2^n} + \dots$$

$$1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1}n + \dots$$

Theorem

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$

converges if all three of the following conditions are satisfied:

- 1. The u_n 's are all positive.
- **2.** The positive u_n 's are (eventually) nonincreasing: $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- 3. $u_n \rightarrow 0$.

Example

The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

clearly satisfies the three requirements of Theorem with N=1; it therefore converges.

1.6 Power Series and Convergence

DEFINITIONS A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots$$
 (2)

in which the center a and the coefficients $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants.

Example:

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots.$$

This is the geometric series with first term 1 and ratio x. It converges to 1/(1-x) for |x| < 1. We express this fact by writing

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, \quad -1 < x < 1. \tag{3}$$

Example:

$$1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 + \dots + \left(-\frac{1}{2}\right)^n (x - 2)^n + \dots$$
 (4)

matches Equation (2) with a=2, $c_0=1$, $c_1=-1/2$, $c_2=1/4$, ..., $c_n=(-1/2)^n$. This is a geometric series with first term 1 and ratio $r=-\frac{x-2}{2}$. The series converges for $\left|\frac{x-2}{2}\right|<1$ or 0< x<4. The sum is

$$\frac{1}{1-r} = \frac{1}{1+\frac{x-2}{2}} = \frac{2}{x},$$

SO

$$\frac{2}{x} = 1 - \frac{(x-2)}{2} + \frac{(x-2)^2}{4} - \dots + \left(-\frac{1}{2}\right)^n (x-2)^n + \dots, \qquad 0 < x < 4.$$

Example:

For what values of **x** do the following power series converge?

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

(d)
$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \cdots$$

Solution Apply the Ratio Test to the series $\sum |u_n|$, where u_n is the *n*th term of the power series in question.

(a)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{n+1}}{n+1} \cdot \frac{n}{x} \right| = \frac{n}{n+1} |x| \longrightarrow |x|.$$

The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the *n*th term does not converge to zero. At x = 1, we get the alternating harmonic series $1 - 1/2 + 1/3 - 1/4 + \cdots$, which converges. At x = -1, we get -1 - 1/2 - 1/

 $1/3 - 1/4 - \cdots$, the negative of the harmonic series; it diverges. Series (a) converges for $-1 < x \le 1$ and diverges elsewhere.

$$0$$
 1 0 1 x

(b)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{2n+1}}{2n+1} \cdot \frac{2n-1}{x^{2n-1}} \right| = \frac{2n-1}{2n+1} x^2 \rightarrow x^2.$$
 $2(n+1)-1=2n+1$

The series converges absolutely for $x^2 < 1$. It diverges for $x^2 > 1$ because the *n*th term does not converge to zero. At x = 1 the series becomes $1 - 1/3 + 1/5 - 1/7 + \cdots$, which converges by the Alternating Series Theorem. It also converges at x = -1 because it is again an alternating series that satisfies the conditions for convergence. The value at x = -1 is the negative of the value at x = 1. Series (b) converges for $-1 \le x \le 1$ and diverges elsewhere.

(c)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0 \text{ for every } x.$$
 $\frac{n!}{(n+1)!} = \frac{1 \cdot 2 \cdot 3 \cdots n}{1 \cdot 2 \cdot 3 \cdots n \cdot (n+1)}$

The series converges absolutely for all x.

(d)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = (n+1) |x| \to \infty \text{ unless } x = 0.$$

The series diverges for all values of x except x = 0.

1.7 Taylor and Maclaurin Series

DEFINITIONS Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by** f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The Maclaurin series of f is the Taylor series generated by f at x = 0, or

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

Example

Find the Taylor series generated by f(x) = 1/x at a = 2. Where, if anywhere, does the series converge to 1 > x?

Solution We need to find f(2), f'(2), f''(2), Taking derivatives we get

$$f(x) = x^{-1}$$
, $f'(x) = -x^{-2}$, $f''(x) = 2!x^{-3}$, ..., $f^{(n)}(x) = (-1)^n n! x^{-(n+1)}$

so that

$$f(2) = 2^{-1} = \frac{1}{2}, \quad f'(2) = -\frac{1}{2^2}, \quad \frac{f''(2)}{2!} = 2^{-3} = \frac{1}{2^3}, \quad \cdots, \quad \frac{f^{(n)}(2)}{n!} = \frac{(-1)^n}{2^{n+1}}.$$

The Taylor series is

$$f(2) + f'(2)(x - 2) + \frac{f''(2)}{2!}(x - 2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x - 2)^n + \dots$$

$$= \frac{1}{2} - \frac{(x - 2)}{2^2} + \frac{(x - 2)^2}{2^3} - \dots + (-1)^n \frac{(x - 2)^n}{2^{n+1}} + \dots$$

This is a geometric series with first term 1/2 and ratio r = -(x - 2)/2. It converges absolutely for |x - 2| < 2 and its sum is

$$\frac{1/2}{1+(x-2)/2} = \frac{1}{2+(x-2)} = \frac{1}{x}.$$

In this example the Taylor series generated by f(x) = 1/x at a = 2 converges to 1/x for |x - 2| < 2 or 0 < x < 4.

Example:

Find the Taylor series generated by $f(x) = \cos x$ at x = 0.

Solution The cosine and its derivatives are

$$f(x) = \cos x,$$
 $f'(x) = -\sin x,$
 $f''(x) = -\cos x,$ $f^{(3)}(x) = \sin x,$
 \vdots \vdots \vdots
 $f^{(2n)}(x) = (-1)^n \cos x,$ $f^{(2n+1)}(x) = (-1)^{n+1} \sin x.$

At x = 0, the cosines are 1 and the sines are 0, so

$$f^{(2n)}(0) = (-1)^n, f^{(2n+1)}(0) = 0.$$

The Taylor series generated by f at 0 is

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$= 1 + 0 \cdot x - \frac{x^2}{2!} + 0 \cdot x^3 + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}.$$