Theorem —The Comparison Test

Let) a,,) c, ,and ), d, be series with nonnegative terms. Suppose that for some
integer N

d,=a

n

=G for all n > N.

n

(a) If Xc, converges, then Xa, also converges.

L=

(b) If Xd, diverges, then Xa, also diverges.

Example:

(a) The series
< 5
,; on— 1
diverges because its nth term

5
5Smn—1

n

e
5
is greater than the nth term of the divergent harmonic series.

(b) The series

00

| . i | |
2= Lhgprgrtyr e

n=0 n.

converges because its terms are all positive and less than or equal to the corresponding
terms of

< | |, 1
|T2W=]+|+;+¥+"m
n=0~ = -

The geometric series on the left converges and we have
I I
s s L == 3
2,5 I =41/2)

Limit Comparison Test

Suppose that a,, > 0 and b,, > 0 for alln = N (N an integer).
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a,
1. If lim - b, = ¢ > 0, then Xa, and X b, both converge or both diverge.
n—0od

a,
2. If lim b, = 0 and X b, converges, then Xa, converges.
n—>0C

a, . .
. If lim —— = oo and X b, diverges, then Xa, diverges.

n—o0 ..

Example:

Which of the following series converge, and which diverge?

3,5.7 .9 - 2n + 1 < _ 2n+1
Sttt = =
@) 1 9 1™ 25 Em + 1)2 ,,E_:ln-+ 2n + 1
I N IS U S
Byttt = -
1 +2In2  1+3In3  1+4In4 — +nlnn
© —9 +71 T2 zl

Sol: We apply the Limit Comparison Test to each series.

(a) Let a, = (2n + 1)/(n* + 2n + 1). For large n, we expect a, to behave like
2n/n* = 2/n since the leading terms dominate for large n, so we let b, = 1/n. Since

(s o] (s ] I
b, = D 5 diverges
n=1 n=1
and

2 + n
llm — = lim ——
be n—com® +2n + 1

>a, diverges by Part 1 of the Limit Comparison Test. We could just as well have
taken b, = 2/n, but 1 /n is simpler.

(b) Let a, = 1/(2" — 1). For large n, we expect a, to behave like 1/2", so we let
b, = 1/2". Since

>b, = 2,,— converges
A=l a=12

lim 2 = 5
m-— = 1m
L by
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= lun-————l————
n—o< ] = (l/jn}
=1,

>a, converges by Part | of the Limit Comparison Test.

(¢) Leta, = (1 + nlnn)/(n* + 5). For large n, we expect a, to behave like (n In n) /n*> =

(Inn)/n. which is greater than 1 /n for n = 3, so we let b, = 1/n. Since
00 00 I
> b, = D ;diverges
n=2 n=2
and
a, . n+nflnn
lim == lim ———F——
n—xb, n—x mw+ 5
— |'X).
>a, diverges by Part 3 of the Limit Comparison Test. S

The Absolute Convergence Test

If 2 |a,| converges, then 2“ converge, the converse is not true

" n=1
Example:

(a) For E(—l)"*' # =] - 41 + % — 11_6 + -+ -, the corresponding series of absolute

n__
values is the convergent series
o0
Eiﬁ 0 S T
- 9716

The original series converges because it converges absolutely.

oc . . . .
(b) For s:gn = ST] 3 51:2 * 5133 + «++, which contains both positive and
n=1

negative terms, the corresponding series of absolute values is

D

n=

sin _ Isin 1] & |sin 2|
I 1 4

which converges by comparison with E ,(1/n%) because |sinn| = 1 for every n.
The original series converges absolutely; therefore it converges. it
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The Ratio Test

Let Ea be any series and suppose that lim |~

A=—*D0

Then (a) the series converges absolutely if p < 1, (b) the series diverges if
p = 1 or p is infinite, (¢) the test is inconclusive if p = 1.

Example

Investigate the convergence of the following series.

2"+ S (2n)! < 4'n'n!
(a) (b) (c) .
3 *F E n'n! 2‘1 (2n)!
Sol:
(a) Forthe series 3 (2" + 5)/3",
Gut| _ @ +5)/3 45 1 (24527 _12_2
4 | 2"+ 5)/3" =327 +5 3\1+5-2" 31 3

The series converges absolutely (and thus converges) because p = 2/3 is less than 1. This
does not mean that 2/3 is the sum of the series. In fact,

2 +5_$(2) ;o5 5 21
..; _,E](i) ZT l—{2/3)+1—(1m vk

(2n)! B (2n + 2)!
n'n!’ then a,., = o+ Din + 120 nd

(b) Ifa, =

ays1|  n!a!2n + 2)(2n + 1)(2n)!
4|~ (n+ Dia + 1)!2n)!
_(2n+2)(2n+l)_4"+2
m+Dn+1)  a+l

— 4,

The series diverges because p = 4 is greater than 1.

(c) Ifa, = 4"n'n'/(2n)!, then

QAps
a,

B 4 n + Dlin + 1) _ (2n)!
~ (2n + 2)(2n + 1)(2n)!  47a!n!

4n+ in+ 1) 2n + 1)
= — —
(2n + 2)(2n + 1) 2n + 1
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Because the limit is p = |, we cannot decide from the Ratio Test whether the series
converges. When we notice that a,,,/a, = 2n + 2)/(2n + 1), we conclude that
a,. is always greater than a, because (2n + 2)/(2n + 1) is always greater than 1.
Therefore, all terms are greater than or equal to a; = 2, and the nth term does not
approach zero as n — o0, The series diverges. =i

The Root Test

Let }'a,, be any series and suppose that
lim = Vla,| = p.

Then (a) the series converges absolutely if p < 1, (b) the series diverges if
p > 1 or pis infinite, (¢) the test is inconclusive if p = 1.

Example:

Which of the following series converge, and which diverge?

;(, ;")"

Solution We apply the Root Test to each series, noting that each series has positive terms.

CEY

; ™2

lliﬁ nverges becau "E=i=(\‘/;)‘ l— <1
a 247 converges asc\;zﬂ T 3 3 :

Alternating Series

A series in which the terms are alternately positive and negative is an alternating

series.
Example:
—2+1—%+%—%+...+(_2'_:"4

1 =24 Fp=d 48 =Bt (=1Pn
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Theorem

o0

E(*l)”“u,, = Uy — Uy t+ Uz — Uy + -
n=1

converges if all three of the following conditions are satisfied:

—_

. The u,’s are all positive.

(]

. The positive u,’s are (eventually) nonincreasing: u, = u,,, for all n = N,
for some integer N.

o

. u, —0.

Example

: c 1 1 1 1
The series I =] == o— o
,,Z?, n 27373

clearly satisfies the three requirements of Theorem with N = 1; it therefore

converges.

1.6 Power Series and Convergence

DEFINITIONS A power series about x = 0 is a series of the form
ZCH.X‘”:C0+C|X+C3X2+"'+C,1.l'"+"'. (1)
n=0

A power series about x = a is a series of the form

oo

E(‘n(.r —a)'=cgtcox—a)+cx—a+---+cgx—a+--- (2
n=0

in which the center a and the coefficients ¢, ¢, ¢,, . . ., ¢,, . . . are constants.
Example:

o0
dx"=1+x+x2+ - +x"+ -,
n=0

This is the geometric series with first term 1 and ratio x. It converges to 1/(1 — x) for
|x| < 1. We express this fact by writing

llr=l+.\'+.t3+---+,1“"+---. -1 <x<Ll &)
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Example:

l——{r—2)+ x—2)2+---+(—%)(.r—2)"+--- 4)

matches Equation (2) with @ = 2,¢, = 1,¢, = —1/2,6, = 1/4,...,¢, = (—1/2)".

2. ; = : 3 X— 2 g
This is a geometric series with first term 1 and ratio r = =5 The series converges

x—2
2

for < lor0 < x < 4. The sum is

1 1 2
X

1 —r .r—2=
1+ 555

SO

2 x—2)  @x—2 1)" & =
=l-—F—+"3 _"'+(_§)(x*2)“+”" v

Example:

For what values of X do the following power series converge?

< n—1 x.?n—! —
(b) E‘"’ m-—1 *"3°%
(c)
(d)

Solution Apply the Ratio Test to the series 3, | u, |, where u,, is the nth term of the power
series in question.

@ [ = [ Z54 = 2l = 1
X Un n+1 X 7 ol B Ly
The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the nth

term does not converge to zero. At x = 1, we get the alternating harmonic series
1-1/2+1/3 —1/4 + ---, which converges. At x = —1, we get =1 — 1/2—

1/3 — 1/4 — - -, the negative of the harmonic series; it diverges. Series (a) con-
verges for —1 < x = | and diverges elsewhere.

» X
—] 0 1
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Uy

(b) |

x2+ m—1| _2n-1 22 X B (il
» e 2(n + ) = Jn =+
2n+1 21| 2n+ l

The series converges absolutely for x> < 1. It diverges for x> > 1 because the nth
term does not converge to zero. At x = 1 the series becomes 1 — 1/3 +

1/5 — 1/7 + --- , which converges by the Alternating Series Theorem. It also con-
verges at x = —1 because it is again an alternating series that satisfies the conditions
for convergence. The value at x = —1 is the negative of the value at x = 1. Series (b)

converges for —1 = x = | and diverges elsewhere.

o+l

(c)

_— = —> v - o) - 5 = T
iy (n+ 1) x" n+1 0 forevery x ' :

The series converges absolutely for all x.

- | > I

0

(n + DHlx**!
n'x"

Uiy

@ |5

=(n+ l)]x| —» 00 unless x = 0.

The series diverges for all values of x except x = 0.

> X

=1 o

1.7 Taylor and Maclaurin Series

DEFINITIONS Let f be a function with derivatives of all orders throughout some
interval containing a as an interior point. Then the Taylor series generated by f
atx = ais

2: (x —a) = fa) + f'(@)(x — a) + fz(!a)(.r — a)’
n
+ oo f( (a)(x—a)"+

n!
The Maclaurin series of f is the Taylor series generated by fat x = 0, or

00 h ” n)
(} (0
ﬁ xk = f(0) + f'(O)x +f2(,) +-~+%x"+---

Example

Find the Taylor series generated by f(x) = 1/x ata=2. Where, if

anywhere, does the series converge to 1 >x?
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Solution We need to find f(2), f'(2), f"(2), . .. . Taking derivatives we get

f)=x'Y ff@=—-x2 ffx)=23, ---, M) = (—1)ynx"*D,
so that
R S S i TR T i O B’
fD=2'=3 f@=-5 SGr=2'=5 -, o=
The Taylor series is
‘ "(2) , '"(
f@) + ff@2)x—2) + ! o X2+ +f )(x - 2)" +
1 &= &-2 =2
T2 9 23 + D gn+l
This is a geometric series with first term 1/2 and ratio r = —(x — 2)/2. It converges
absolutely for |x — 2| < 2 and its sum is
1/2 B 1 . |

1+(x—-2)/2 2+@-2 <~
In this example the Taylor series generated by f(x) = 1/x at @ = 2 converges to 1 /x for
Ix — 2] <20r0<x<4. s8]
Example:

Find the Taylor series generated by f(x) = cos x at x =0.

Solution The cosine and its derivatives are
flx) = cos X, f'(x) = —sin x,
f'(x) = —COSs X, O = sin x,

F@(x) - (—=1)" cos x, F@+1)(x) - (—=1)"*! sin x.
At x = 0, the cosines are | and the sines are 0, so
o) = (-1, f20) =0
The Taylor series generated by f at 0 is

0 0 (0
f(0)+f(0)):+f() +f3(,)_ + - --+—f("(!)x"+
= _x . ASNIPERTO sl
=1+0-x 2‘+0r+4'+ +(|)(2)'
_ s CDa*
& e

23



