الحوامض والقواعد القاسية واللينة

الحوامض القاسية (مجموعة أ) Hard acids :

هي ايونات الفلزات القلوية وفلزات الاتربة القلوية والفلزات الخفيفة ذات اعداد التاكسد العالية مثل ${\sf Fe^{+3}}$ ، ${\sf Cc^{+3}}$ ، ... الخ.

الحوامض والقواعد القاسيية تميل الى ان تكون صغيرة الحجم وقليلة الاستقطاب.

الحوامض اللينة (مجموعة ب) Soft acids:

« Pt $^{+2}$ ، Pb $^{+2}$ ، Hg $^{+1}$ ، Cu $^{+1}$ مثل المنخفضة مثل Hg $^{+1}$ ، Cu $^{+1}$ ، Cu $^{-1}$ الخ ...

الحوامض والقواعد اللينة تميل الى ان تكون كبيرة الحجم واكثر استقطاب.

حوامض حدودية Cu⁺² ، Ni⁺²، Co⁺²

حوامض لينة Cu⁺¹

قواعد قاسية Cl · OH · H2O · NH3

قواعد لينة SCN:

قاعدة:

الحامض القاسي يفضل الارتباط مع القاعدة القاسية لتكوين معقد مستقر.

الحامض اللين يفضل الارتباط مع القاعدة اللينة لتكوين معقد مستقر.

التجربة الثامنة

تحضير المعقد Cu(tu)₃]₂SO₄.3H₂O

Trithioureacupper(I) sulphate hydrate

كبريتات ثلاثى ثايويوريا نحاس (١) المائى

الجزء النظري:

الثايويوريا ليكند متعدد الارتباطات ، فهو قد يرتبط عن طريق الكبريت (الجزء اللين) في حالة وجود (ايون مركزي) حامض لين و يسلك سلوك احادي السن في هذه الحالة . و قد يرتبط عن طريق ذرتي النتروجين (الجزء القاسى) في حالة وجود (ايون مركزي) حامض قاسى و بذلك يسلك سلوك ليكند ثنائى السن .

$$Cu^{+1}$$
 \longrightarrow : S \longrightarrow C

بما ان Cu^{+1} يصنف كحامض لين ، لذا يكون الارتباط مع الثايويوريا من الجزء اللين (الكبريت) اي سلوك الثايويوريا هنا ليكند احادي السن .

$$_{29}$$
Cu = [Ar]₁₈ 3d¹⁰ 4s¹

$$Cu^{+1} = [Ar]_{18}$$
 $3d^{10}$ $4s^0$

 sp^2 : lightarrow

الصفة المغناطيسية: دايامغناطيسي

الشكل الهندسي: مثلث مستوي

$$\begin{array}{c|c}
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +1 \\
 & +$$

هذا المعقد يتواجد بشكل دايمر وليس مونيمر

نوع التفاعل: اكسدة و اختزال و تطبيق لقاعدة القساوة و الليونة

المواد الكيمياوية المطلوبة:

كبريتات النحاس المائية CuSO4.5H2O

SC(NH₂)₂ ثايويوريا

طريقة العمل:

١- اذب ٠,٢٥ غم من الثايويوريا في ٤ مل من الماء الساخن ثم برد المحلول الى درجة حرارة الغرفة.

- ٢- اذب ٠,٢٥ غم من كبريتات النحاس المائية في ٤ مل من الماء ثم اضف هذا المحلول البارد و بصورة تدريجية الى المحلول في خطوة رقم (١) مع التحريك المستمر.
- ٣- برد المزيج بالماء البارد الى ان نلاحض انفصال راسب زيتي ذو لون اصفر (يلتصق بجدار البيكر) ، ركد المحلول لفترة قصيرة ثم اسكب الطبقة المائية و احتفظ بالراسب الزيتي . ملاحظة احياناً لا يتكون راسب زيتي و انما كتل بيضاء .
- ٤- اضف الى هذا الراسب الزيتي محلول مكون من ٠,١٥ غم من الثايويوريا المذابة في ٢ مل من الماء ،ثم رج بشدة الى حين اكتمال البلورة (تتكون بلورات عند الرج بدلاً من الراسب الزيتي)
 ، ثم رشح.