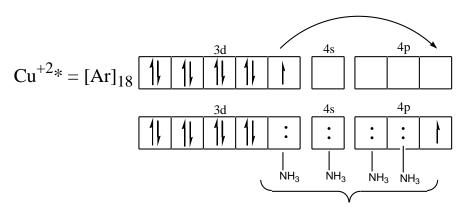
التجربة الثانية

تحضير المعقد SO₄.H₂O]

Tetraamminecupper(II) sulphate hydrate

كبريتات رباعي امين نحاس (١١) المائي

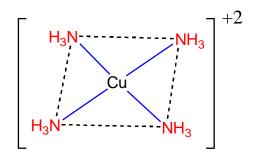
الجزء النظري:


الامونيا: ليكند احادي السن

$$_{29}$$
Cu = [Ar]₁₈ $3d^{10} 4s^{1}$

$$Cu^{+2} = [Ar]_{18}$$
 $3d^9 4s^0$

سابقا كان يعتقد ان تهجين الايون المركزي هو sp^3 ولكن دراسات الاشعة السينية اثبتت ان الشكل الهندسي هو مربع مستوي لذلك يكون التهجين dsp^2 حيث ينتقل الكترون من dsp^2 .



dsp² : التهجين

اوربیتال d : داخلی

الصفة المغناطيسية: بارامغناطيسي

الشكل الهندسي: مربع مستوي

المواد الكيمياوية المستخدمة:

 $CuSO_{4.5}H_{2}O$: کبریتات النحاس المائیة

الامونيا المركزة. NH₃

الكحول الأثيلي: C2H5OH

طريقة العمل:

1. اذب0.5 غم من كبريتات النحاس المائية في خليط مكون من 2 مل امونيا و2 مل من الماء, ثم حرك المحلول لمدة 5 دقائق.

2. اضف الى المحلول الازرق 2 مل من الكحول الاثيلي وبصورة تدريجية, ثم اترك الخليط بدرجة حرارة الغرفة لمدة 10 دقيقة.

ق. برد المحلول في حمام ثلجي ثم رشح البلورات , واغسلها بمحلول مكون من (2مل امونيا و2 مل
كحول اثيلي) , ثم اغسلها بالكحول الاثيلي , جفف تاناتج في الهواء , ثم زنه .

المناقشة:

س1: ماهو الاحتمال النظري لتهجين الايون المركزي و شكل المعقد ؟

س2: ماالغرض من اضافة الكحول الاثيلي اثناء تحضير المعقد ؟