
Software Engineering

1

عمرانإسماعيلايناسم.م

Chapter One: Introduction to
Software Engineering

1.1 The Computer Software Definition

1.2 Software Engineering Definition

1.3 The characteristic of software engineer

1.4 Software Characteristics

1.5 Software Applications

1.6 Software: A crisis on the horizon

1.7 The Characteristics of Well-Engineered Software

1.8 The Goals of Software Engineering

2

What is software?

The software might take the following forms:

❑Instructions: Computer programs, that when
executed provide desired function and
performance.

❑Data structured: That enable the programs to
manipulate information.

❑Documents: That describes the operation and use
of programs.

3

Types of Software

Generic Custom

4

Generic Software Products

Developed to be sold to a range of different

customers.

Examples:

—MS Office

—Photoshop

—games

5

Custom Software Products

Developed for a single customer according to

their specification.

The user (or person paying for the software)

controls the specification.

Example:

—Air traffic control systems

6

Computer Software Definition

It is the product that software engineers

design and build. It contains programs that

execute within a computer of any size and

architecture, documents that include hard-copy

and data that combine numbers and text, video,

and audio information.

7

Software Engineering Definition

• The systematic of engineering approaches to
the design and construction of computer
programs.

• Software engineering is defined as a process
of analyzing user requirements and then
designing, building, and testing software
application which will satisfy those
requirements.

• The use of engineering principles (methods)
in order to obtain software that is reliable and
works on real machines.8

9

The characteristics of software
engineer

1- Good programmer and fluent in one or more
programming language.

2- Well knowledgeable in data structure and
approaches.

3- Familiar with several designs approaches.

4-Be able to translate not clear requirements and
desires into accurate specification (مواصفات).

5- Able to a build a model.

6- Communication skills and interactive skills.

10

Software Characteristics

1. Software is developed or engineered; it is not

manufactured in the classical sense. Some

similarities exist between software development

and hardware manufacture. In both activities,

high quality is achieved through good design.

Software costs are concentrated in engineering.

2. Software doesn't "wear out“ يتآكل

11

Failure curve for hardware

12

Idealized and actual failure curves for software

13

14

When a hardware component wears out, it is

replaced by a spare part. There are no software spare

parts. Every software failure indicates an error in

design or in the process through which design was

translated into machine executable code. Therefore,

software maintenance involves more complexity

than hardware maintenance.

Software Characteristics

Software Characteristics

3. Software continues to be custom built.

A software component should be designed and

implemented so that it can be reused in many

different programs(algorithms, data structure

and encapsulation).

15

Software Engineering

1

م .م ایناس إسماعیل عمران

 Chapter One: Introduction to Software
Engineering

1.1 The Computer Software Definition

1.2 Software Engineering Definition

1.3 The characteristic of software engineer

1.4 Software Characteristics

1.5 Software Applications

1.6 Software: A crisis on the horizon

1.7 The Characteristics of Well-Engineered Software

1.8 The Goals of Software Engineering

2

 Software Applications

 1.System software: : is software designed to provide a

platform for other software or is a type of computer program that is

designed to run a computer's hardware and application programs.

Hence ;system software is the interface between the hardware and

user applications) Examples of system software include operating

systems like mac OS, Linux, Android and Microsoft

Windows, computational science software, game engines, search

engines.

3

 Software Applications

 2. Real-time software:
 is a time-bound system which has well-defined, fixed time

constraints. For example: Online gaming.

 3. Business software: Business information processing is the
largest single software application area. (e.g., payroll, accounts
receive/pay).

 4. Engineering and scientific software: Computer-aided design
(CAD), system simulation, and other interactive applications
have begun to take on real-time.

4

Software Applications

5. Embedded software: Intelligent products have become common
place in nearly every industrial market. Example) keypad control
for a microwave(.

6. Personal computer software: Such as (Word processing,
spreadsheets, computer graphics, multimedia, entertainment,
database management).

7. Web-based software: The Web pages retrieved by a browser

(e.g., HTML, Perl, or Java).

8. Artificial intelligence software: It makes use of non-numerical

algorithms to solve complex problems. (e.g., Expert system
games playing are representative of applications within this
category).

5

Software: A crisis on the horizon الازمات

The term refers to a set of problems that are appears in
the development of computer software.

Some “crisis” issues:
• cost of hardware/software
• “Wrong” products
• Poor quality
• Constant maintenance
• slow

6

 The Characteristics of Well-Engineered
Software

1- Maintainability: software should be written in
such a way that it may evolve to meet the changing
needs of customer. This is critical attribute because
software change is an usual requirement of a
changing business environment.

2- Dependability: software dependability has a

range of characteristics, including reliability,
security and safety.

7

 The Characteristics of Well-Engineered
Software

• 3- efficiency: software should not make wasteful
use of system resources, such as memory and
processor cycles. Therefore efficiency includes
responsiveness, processing time, memory utilization
etc.

• 4- Usability: software must be usable, without under
effort by the type of user for whom it is designed.
This means that it should have an appropriate user
interface and adequate documentation.

8

The Goals of Software Engineering

1.User Satisfaction:
 This is the first goals of software engineering

and also the most important goal while
developing any software is focused about user
satisfaction.

2. High reliability:
 Code of software must be reliable so that cant

have any mistake or bugs in final product which
is going to release for end user.

9

The Goals of Software Engineering

3. Delivery on time

 The delivery time matters while develop any
software for client or customer. It is hard to
determine the exact time to complete software
but if the developing software is done by using
a systematic order and breaking the whole
project in parts with estimating time for each
module. By accomplish this steps a proposed
deadline can be given to completing a project
for a client.

10

The Goals of Software Engineering

4-Low Production Cost:
 software which is cost-effective for develop and

maintain gets always the attention of users and if
the software is succeeded to match the user
requirement there is a big chance of sale or
profit in either way.

11

 How should you make software
?engineer goals

• Specific: Clear and well-defined.

• Measurable: Easy to track.

• Attainable: Feasible with your resources.

• Relevant: Appropriate for your ambitions, field,
or company.

• Time-bound: Achievable within a preset time
frame.

12

 Software Development
Model

م.م ایناس إسماعیل عمران

1

Topics:
2.1 Software Lifecycle
2.2 Linear Sequential Waterfall Model
2.3 Prototyping Model
2.4 Incremental Model
2.5 Spiral Model
2.5 Others Model

2

Chapter Two: Software
Development Model

 Is a process that produces software with the highest
quality and lowest cost in the shortest time possible.

 SDLC provides a well-structured flow of phases that help
an organization to quickly produce high-quality software
which is well-tested and ready for production use.

3

Software Lifecycle

 Each software product proceeds to a number of stages,
:these are
Requirements engineering •
Software design •
Software construction •
Software testing •
Software deployment •
Software maintenance •

4

Software Lifecycle

▪ Requirements gathering
(also known as Requirements elicitation) is the process of
generating a list of requirements (functional, system, technical,
etc.) from the various stakeholders (customers, vendors, IT staff,
etc.) that will be used as the basis for the formal Requirements
Definition.
▪Requirements analysis
refining and modifying the gathered requirements

▪ Requirements specification
 documenting the system requirements in a formal manner

to ensure clarity, reliability, and completeness

5

 Requirements Engineering
Components

6

 Requirements and
Specification

Problem domain

Specifi
cationCustomer

Software Engineer

Describe
s

Specifie
s

Requirements Program

Software (Solution) domain

Analyze
s

Develop
s

1. Requirements Engineering: (requirement analysis and definition
by using engineering approach) Requirements engineering is the
interface between customers and developers on a software project.
Requirements should make explicit the ideas of the customer about
the system.

2. Software Design: the designers convert the software requirements
from stage 1 into a software design by describe the software in
such a way that programmers can write line of code that
implement what the requirements specify.

3. Software Construction: is concerned with implementing the

software design by means of programs in one or more
programming languages. This stage content several steps, these are
:

8

Software Lifecycle

 A- Software reuse: (writing units of source code, which
 can be reused in other projects). Building software
 systems from prefab software components is an old
. dream of software engineering

 b. Security and reliability: software must be
 dependable by making it reliable (work very well under
.any environments), secure and safety

 c. Software documentation: (User documentation,
 Technical documentation and Documentation
.generation)

 d. Coding Standards: ensure code maintainable by
.others than the original developer

9

4. Validation and Verification
 a. Software Inspections
 Are reviews of the code with the purpose of detecting

defects. In an inspection someone other than the
programmer reads a program unit to determine
whether it satisfies the requirements and specification.

 b. Software Testing:
 Testing each unit founded in this software, follow by

testing software integration.

 5. Software Deployment:
 After development, software should be put to use

(available to users, who can then download, install,
and activate it).

10

Activities make up the SW deployment process are:
� Packaging
� Release
� Installation
� Configuration
� Activation
� De-activation
� Update
� De-installation
� De-release
6. Software Maintenance: after first release, software maintenance is

needed to improve it (repair defects), and to extend it (add new
functionality).

11

Software Development Model

اعداد
ایناس إسماعیل عمران

1

The software process

A structured set of activities required to develop
a software system

� Specification
� Design
� Construction
� Validation
� Evolution
 A software process model is a representation of

a process. It presents a description of a process
from some particular view

2

 SW Process Models
1-Linear Sequential Waterfall Model

 Waterfall approach was first Process Model to be
introduced and followed widely in Software
Engineering to ensure success of the project. In "The
Waterfall" approach, The whole process of software
development is divided into separate process phases,
these are:

1) Requirement Specifications (analysis and definition).
2) Software Design.
3) Implementation.
4) Testing.
.Maintenance (5

3

4

Unidirectional, no way back
finish this step before moving to the next

Waterfall Model process

1. Requirement Analysis & Definition:
 All possible requirements of the system to be developed
are captured in this phase. Requirements are set of
functionalities and constraints that the end-user expects
from the system.
The requirements are gathered from the end-user by
meeting, these requirements are analyzed for their
validity. Finally, a Requirement Specification document
is created which serves the purpose of guideline for the
next phase of the model.

5

Waterfall Model process

 2. System & Software Design:
 Before a starting for actual coding, the requirement

specifications from first phase are studied in this phase
and system design is prepared.

 System Design helps in specifying hardware and also
helps in defining overall system architecture. The system
design specifications serve as input for the next phase of
the model.

6

Waterfall Model process

3- Implementation & Unit Testing:

On receiving system design documents, the work is
divided in modules/units and actual coding is started.
The system is first developed in small programs called
units, which are integrated in the next phase.

Each unit is tested for its functionality; this is referred to
as Unit Testing. Unit testing mainly verifies if the
modules/units meet their specifications.

7

Waterfall Model process

3- Implementation & Unit Testing:

On receiving system design documents, the work is
divided in modules/units and actual coding is started. The
system is first developed in small programs called units,
which are integrated in the next phase. Each unit is tested
for its functionality; this is referred to as Unit Testing.
Unit testing mainly verifies if the modules/units meet their
specifications.

8

Waterfall Model process

4- Integration & System Testing:
As specified above, the system is first divided in units which
are developed and tested for their functionalities. These units
are integrated into a complete system during Integration phase
and tested to check if all modules/units coordinate between
each other as a whole system. After success testing the
software, it is delivered to the customer.

5) Maintenance: Generally, the issues related to the system
are solved after deployment of the system. Not all the
problems come in picture directly but they arise time to time
and needs to be solved; hence this process is referred as
Maintenance.

9

Disadvantages of the Waterfall Model

1. Not all requirements are received at once.
2. The problems with one phase are never solved

completely during that phase.
3. The project is not separated in phases in flexible way.
4. As the requirements of the customer goes on getting

added to the list, not all the requirements are satisfied,
this results in development of almost unusable system.

5. difficulty to change after the process is started

 Therefore, this model is only appropriate when the
requirements are well-understood

10

SOFTWARE MODELS
م.م أیناس إسماعیل عمران

1

THE PROTOTYPE MODEL

 Is a systems development method in which a prototype is
built, tested and then rewritten as necessary until an
acceptable outcome is achieved.

 The prototype model is using for many reasons, such as:
1. A customer defines a set of general objectives for software

but does not identify detailed input, processing, or output
requirements.

2. The developer may be unsure of the efficiency of an
algorithm, the adaptability of an operating system, In these
situations, a prototyping model may offer the best approach.

2

 THE PHASES OF THE PROTOTYPING
:MODEL

1) Requirements gathering (listen to customer): developer
and customer meet and define the requirements of the
system in detail. During the process, the users of the system
are interviewed to know what is their expectation from the
system.

2) Quick design
 The second phase is a primary design or a quick design. In
stage, a simple design of the system is created. However, it is
not a complete design. It gives a brief idea of the system to the
user. The quick design helps in developing the prototype
.

3

3) Construction of a prototype: writing the software code depending on

the quick design information.

4) Evaluation: the prototype is evaluated by the customer/user and used

to refine requirements for the software to be developed. Iteration occurs

as the prototype is turned to satisfy the needs of the customer, while at

the same time enabling the developer to better understand what

requirements to be done.

4

THE PHASES OF THE PROTOTYPING
:MODEL

5

:Figure of prototyping model

 ADVANTAGES OF THE PROTOTYPING
MODEL

• Users are involved in development. Therefore, errors can be detected

in the initial stage of the software development process.

• Missing functionality can be identified, which helps to reduce the risk

of failure.

• Helps team member to communicate effectively

• Customer satisfaction exists because the customer can feel the product

at a very early stage.

• There will be hardly any chance of software rejection.

6

 ADVANTAGES OF THE PROTOTYPING
MODEL

• Allows the client to compare if the software code matches the

software specification.

• No need for specialized experts to build the model

• The prototype helps to gain a better understanding of the customer's

needs.

• Prototypes can be changed and even discarded.

• Quicker user feedback helps you to achieve better software

development solutions.

7

 DISADVANTAGES OF THE PROTOTYPING
MODEL

• Prototyping is a slow and time taking process.

• The cost of developing a prototype is a total waste as the prototype is

ultimately thrown away.

• Prototyping may encourage too much change requests.

• Some times customers may not be willing to participate in the iteration

cycle for the longer time duration.

• It is very difficult for software developers to accommodate all the changes

demanded by the clients.

8

THE SPIRAL MODEL

 Spiral model, is an evolutionary software process model that

couples the iterative nature of prototyping with the controlled

and systematic aspects of the linear sequential model. Using

the spiral model, software is developed in a series of

incremental releases. During early iterations, the incremental

release might be a paper model or prototype. During later

iterations, more complete versions of the engineered system

are produced.

9

10

The Spiral Model Phases

 Software Development
Model

اعداد
ایناس إسماعیل عمران

1

The Incremental Model

 The incremental model combines elements of the (waterfall
model with the iterative philosophy of prototyping). Each linear
sequence produces “increment” of the software. For example,
word-processing software developed using the incremental
might:

1) Deliver basic file , editing, and document production functions in
the first increment.

2) More editing and document production capabilities in the second
increment.

3) Spelling and grammar checking in the third increment.
4) Advanced page layout capability in the fourth increment.

2

3

▪ The first increment is often a core product. That is,
basic requirements are addressed, but many additional
features remain undelivered. The core product is used by
the customer. As a result of use and/or evaluation, a plan
is developed for the next increment. But unlike
prototyping, the incremental model focuses on the
delivery of an operational product with each increment.

4

▪ User requirements are listed and the highest
priority requirements are included in early
increments

▪ Once the development of an increment is started,
the requirements are frozen though requirements
for later increments can continue to evolve.

5

Incremental development
advantages

� Generates working software quickly and early
during the software life cycle.

� More flexible – less costly to change requirements.
� Easier to test during a smaller iteration.
� Easier to manage risk because risky pieces are

identified and handled during its iteration
� Lower risk of overall project failure
� By using this model client is able to respond to

every built

6

Problems

� For incremental model, required good designing and well planning.

� The complete cost of this model is higher than waterfall model.

� Special skills (e.g. in languages JavaScript) may be required.

Applicability

� For small or medium-size interactive systems

� For parts of large systems (e.g. the user interface)

� For short-lifetime systems

7

SOFTWARE MODELS
 م.م ایناس إسماعیل

عمران

1

Spiral Model

 Spiral model is one of the most important Software
Development Life Cycle models, which provides support for
Risk Handling. spiral model contain many loops. The exact
number of loops of the spiral is unknown and can vary from
project to project. Each loop of the spiral is called a Phase of
the software development process. Cost and schedule are
adjusted based on feedback derived from customer .In addition,
the project manager adjusts the planned number of iterations
required to complete the software. hence; the project manager
has an important role to develop a product using spiral model.

2

A spiral model is divided into six task regions:

1.Customer communication-tasks required to establish
effective communication between developer and customer.

2.Planning-tasks required defining resources, timelines, and
other project-related information.

3.Risk analysis-tasks required to assess both technical and
management risks.

4.Engineering-tasks required building one or more
representations of the application.

3

4

5.Construction and release-tasks required to construct, test
code , install, and provide user support (e.g., documentation
and training).

6.Customer evaluation-tasks required to obtain customer
feedback based on evaluation of the software representations
created during the engineering stage and implemented during
the installation stage.

1. Software is produced early in the software life cycle.
2. Risk handling is one of important advantages of the

Spiral model, it is best development model to follow due
to the risk analysis and risk handling at every phase.

3. Flexibility in requirements. In this model, we can easily
change requirements at later phases ,Also, additional
Functionality can be added at a later date.

4. It is good for large and complex projects.
5. It is good for customer satisfaction. We can involve

customers in the development of products at early phase
of the software development.

5

:Advantages of Spiral Model

1. It is not suitable for small projects as it is expensive.
2. It is much more complex than other SDLC models. Process

is complex.
3. Too much dependable on Risk Analysis and requires highly

particular skill.
4. Difficulty in time management. As the number of phases is

unknown at the start of the project, so time estimation is
very difficult.

5. The model has not been used as widely as the linear
sequential or prototyping model hence, it is difficult to
predict the phase (iteration) exactly

6

:Disadvantages of Spiral Model

1. Also known as the Verification and Validation model,
Validation is the process of checking whether the
specification captures the customer's needs, while
verification is the process of checking that the
software meets the specification

2. the V-shaped model is develop model of Waterfall
and is characterized by a testing phase for each
development stage. Like Waterfall, each stage begins
only after the previous one has ended.

3. This model is useful when there are no unknown
requirements, as it’s still difficult to go back and
make changes.

7

V-Shaped Model

8

V-Shaped Model

1. Agile SDLC model is a combination of iterative and
incremental process models with focus on process
adaptability and customer satisfaction by rapid delivery
of working software product.

2. Agile Methods break the product into small incremental
builds. These builds are provided in iterations. Each
iteration typically lasts from about one to three months.
The model produces uncompleted releases, so the
incremental changes from the previous release. At each
iteration, the product is tested. Every iteration need
functional teams (customers, developers and testers)
work together throughout the project

9

Agile Model

10

Software Requirements

م.م ایناس إسماعیل عمران

1

Topics :

3.1 Requirements Analysis and Definition

3.2 Requirements Specification

3.3 Software Requirements

3.4 Software Specification

3.5 Software Requirements Document

2

Requirements

•Features of system or system function used to
fulfill system purpose.

•Focus on customer’s needs not on solutions:

•Requirements definition document
(written for customer).

•Requirements specification document
(written for programmer; technical staff).

3

Requirements Engineering
Process

4

Feasibility studies

�A feasibility study decides whether or not the
proposed system is worthwhile.

�A short (2-3 weeks) focused study that checks
—If the system contributes to organizational

objectives;
—If the system can be engineered using current

technology and within budget;
—If the system can be integrated with other systems

that are used.
5

Elicitation and analysis

� Involves technical staff working with customers to find
out about:

 —the application domain,

 —the services that the system should provide

 —and the system’s operational constraints.

�May involve end-users, managers, engineers involved in
maintenance, experts, etc. These are called stakeholders
Domain .

6

Requirements Analysis and Definition
 Software requirements analysis is necessary to avoid

creating software product that fails to meet the customer's

needs.

 Software requirements are description of features and

functionalities of the target system. Requirements convey

the expectations of users from the software product. The

requirements can be known or unknown, expected or

unexpected from client’s point of view.
7

Writing Requirements Definitions

Requirements definitions usually consist of natural
language, supplemented by (e.g., UML: Unified Modeling
Language) diagrams and tables.

Three types of problems can arise:

• Lack of clarity: It is hard to write documents that are
both exact and easy-to-read.

•Requirements confusion: Functional and
non-functional requirements tend to be intertwined.

•Requirements combination: Several different
requirements may be expressed together.

User requirements
• Statements in natural language plus diagrams of the

services that the system provides and its operational
constraints.

• Should describe functional and non-functional
requirements so that they are understandable by system
users who don't have detailed technical knowledge.

•Written for customers

9

• A structured document setting out detailed descriptions
of the system services.

•Written for developers

System requirements

 System Req.: Functional and
Non-functional Requirements

 Functional requirements describe system services or
functions that a software must perform.

• Calculation (ex. calculate sales tax).

• data manipulation (ex. update the database on the server) .

 Non-functional requirements are constraints on the system or
the development process. Non-functional requirement is
essential to ensure effectiveness of the entire software system .

• constraints in design of the system (ex the site should load in
3 seconds when the number of simultaneous users are >
10000)

 Software
 Requirements

 Analysis

م.م ایناس إسماعیل عمران

1

Requirements Analysis
� Requirements analysis, also called requirements engineering, is

the process of determining user expectations for a new or

modified product. These features, called requirements, must

suitable and detailed. In software engineering, such requirements

are often called functional specifications. Requirements analysis

is an important aspect of project management.

� Provides software designer with a representation of system

information and function that can be translated to architectural

design.

�

2

Software Requirements Analysis Phases
• Problem recognition
• Specification
• Modeling
• Evaluation
• Review
 Analysis Principles
• The information domain of the problem must be

represented and understood.
• The functions that the software is to perform must be

defined.
• Models describe information and function in detail.
• The analysis process should move from the essential

information toward implementation details.

3

 SRS is a document created by system analyst after the
requirements are collected from various stakeholders.

� SRS defines hardware, external interfaces, speed of operation,
response time of system, portability of software across various
platforms, maintainability, speed of recovery after crashing,
Security, Limitations etc.

� The requirements received from client are written in natural
language. It is the responsibility of system analyst to document
the requirements in technical language so that they can be
useful by the software development team.

4

Software Requirement
Specification (SRS)

 SRS should come up with following features:
▪ User Requirements are expressed in natural language,

(ex:Twenty users can use System at the same time as
without noticeable system delays, print on-screen data to
the printer).

▪ Technical requirements are expressed in structured
language, which is used inside the organization (ex
performance, security).

▪ Format of Forms and GUI screen prints.

5

1-Requirements gathering -The developers discuss with the

client and know their expectations from the software.

2-Organizing Requirements - The developers arrange the

requirements in order of importance, ease of use and suitability.

6

Requirement Elicitation
ProcessRequirement elicitation process can be illustrated using

the following diagram:

� 3-Negotiation & discussion - If there are some conflicts

in requirements of various stakeholders, it is then

negotiated and discussed with stakeholders. Requirements

may then be prioritized and reasonably compromised.

� 4-Documentation - All formal & informal, functional and

non-functional requirements are documented and made

available for next phase processing.

7

 REQUIREMENTS DOCUMENT

م.م ایناس إسماعیل عمران

1

 The Requirements Document
•statement of what is required of the system
developers.

• Should include both a definition and a specification of
requirements

• Should:
 -- specify implementation constraints
 - be easy to change (but changes must be managed)
 - serve as a reference tool for maintenance
 - record about the life cycle of the system
 - characterize responses to unexpected events

• It is not a design document

2

REQUIREMENTS DOCUMENT
STRUCTURE

• Introduction
• Glossary
• User requirements definition
• System architecture
• System requirements specification
• System models
• System evolution
• Appendices
• Index

3

USERS OF REQUIREMENTS DOCUMENTS
�System customers: Read them back to check that they

meet their needs; specify changes to the requirements
�Managers: Use the requirements document to plan the

system development process
�System Engineers: Use the requirements to understand

what system is to be developed
�Test Engineers: Use the requirements to develop

validation tests for the system
�Maintenance Engineers: Use the requirements to help

understand the system and the relationships between its
parts

4

 SOFTWARE REQUIREMENTS
CHARACTERISTICS

� Clear
� Correct
� Coherent
� Logical
� Modify
� Arranged
� Unambiguous
� Traceable
� Credible source

5

Requirement Elicitation Techniques

• Requirements Elicitation is the process to find
out the requirements for an intended software
system by communicating with client, system
users and others who have a stake in the
software system development.

• There are various ways to discover
requirements

6

 REQUIREMENT ELICITATION TECHNIQUES
1. Interviews
2. Surveys
3. Questionnaires
4. Task analysis
5. Domain Analysis
6. Brainstorming
7. Prototyping
8. Observation

7

INTERVIEWS-1

• Interviews are strong medium to collect

requirements. Organization may conduct several

types of interviews such as:

• Structured (closed) interviews, where every single

information to gather is decided in advance, they

follow pattern and matter of discussion firmly.

8

INTERVIEWS
• Non-structured (open) interviews, where information to

gather is not decided in advance, more flexible and less
biased.

• Written interviews

• One-to-one interviews which are held between two persons
across the table

• Group interviews which are held between groups of

participants. They help to uncover any missing requirement as many

people are involved.

9

 REQUIREMENT ELICITATION
TECHNIQUES

م.م ایناس إسماعیل عمران

1

 REQUIREMENT ELICITATION TECHNIQUES
1. Interviews
2. Surveys
3. Questionnaires
4. Task analysis
5. Domain Analysis
6. Brainstorming
7. Prototyping
8. Observation

2

2.SURVEYS
•Organization may conduct surveys among
various stakeholders by querying about their
expectation and requirements from the
upcoming system.

 3.QUESTIONNAIRES
 A document with pre-defined set of objective
questions and respective options is handed
over to all stakeholders to answer, which are
collected and compiled.

3

•A shortcoming of this technique is, if an option
for some issue is not mentioned in the
questionnaire, the issue might be ignored.

4.Task analysis
 Team of engineers and developers may
analyze the operation for which the new
system is required. If the client already has
some software to perform certain operation, it is
studied and requirements of proposed system
are collected.

4

5. Domain Analysis
 Every software falls into some domain
category. The expert people in the domain can
be a great help to analyze general and specific
requirements.

6. Brainstorming
 An informal debate is held among various
stakeholders and all their inputs are recorded for
further requirements analysis.

5

7. Prototyping
 Prototyping is building user interface without
adding detail functionality for user to understand
the features of intended software product.

 If there is no software installed and the client is not
aware of its own requirements, the developer
creates a prototype based on initially mentioned
requirements. The prototype is shown to the client
and the feedback is noted. The client feedback
serves as an input for requirement gathering.

6

8. Observation
 Team of experts visits the client’s
organization or workplace. They observe the
actual working of the existing installed systems.
They observe the workflow at client’s end and
how execution problems are dealt. The team
itself draws some conclusions which aid to form
requirements expected from the software.

7

8

•A use case is the specification of a sequence of
actions, including variants, that a system (or other
entity) can perform, interacting with actors of the
system”.

• e.g., buy a DVD through the internet

•A scenario is a particular trace of action
occurrences, starting from a known initial state.

• e.g., connect to myDVD.com, go to the “search”
page

9

Use Cases and Scenarios

10

Use-cases are a scenario based technique in the
UML (Unified Modeling Language)

—identify the actors in an interaction
—describe the interaction itself
A set of use cases should describe all
possible interactions with the system.
use case = a named collection
 of scenarios

Use case model

 Use – Cases ,Structure
Analysis

اعداد
م.م ایناس إسماعیل

عمران
1

Ex: Use case : Register for courses Description:

Actors: Student, Billing System.

Main success scenario:

1. The student identifies himself/herself.
2. The system verifies student identity.
3. The student selects a valid semester.
4. The student creates, reviews, or changes a schedule.
5. The systems prints a notification.
6. The system sends billing information to the Billing

System

2

Practice: Solution

Billing System

RegistrarProfessor

Student

A person who is
registered to take
courses at the
University

The external system
responsible for student
billing

A person who is
teaching classes at the
University

The person who is
responsible for the
maintenance of the
course registration
system

4

Structure Analysis
 Structured analysis is a software engineering technique that

uses graphical diagrams to portray system specifications

that are easily understood by users. These diagrams describe

the steps that need to occur and the data required to meet the

design function of particular software. This type of analysis

mainly focuses on logical systems and functions, and aims

to convert requirements into computer programs and

hardware specifications.

5

Analysis Model Objectives

� Describe what the customer requires.

� Establish a basis for the creation of a software design.

� create a set of requirements that can be validated once the

software is built.

6

The Elements of Analysis Model

• Data dictionary - contains the descriptions of all data

objects used or produced by the software.

• Entity relationship diagram (ERD) –describe

relationships between data objects.

• Data flow diagram (DFD) - provides an indication of

how data are transformed as they move through the

system; also describe functions that transform the data

flow.
7

8

The Elements of Analysis Model

• State transition diagram (STD) - indicates how

the system behaves as a consequence of external

events, states are used to represent behavior modes.

Arcs are labeled with the events triggering the

transitions from one state to another .

9

10 Figure (4.1): The structure of the analysis model

Use- Case- Example

اعداد
م.م ایناس اسماعیل عمران

 Data Modeling Elements

اعداد
م.م ایناس إسماعیل

عمران
1

Data Modeling Elements (ERD)
 Attributes - name a data object instance, describe its

characteristics, or make reference to another data object

2

Relationships - indicate the manner in which
data objects are connected to one another .

3

Cardinality and Modality (ERD)

• Cardinality - in data modeling, cardinality specifies

how the number of occurrences of one object are

related to the number of occurrences of another object

(1:1, 1:N, M:N)

• Modality - zero (0) for an optional object relationship

and one (1) for a mandatory relationship

4

Cardinality and Modality (ERD)

5

Entity-Relationship Model:

• Entity-Relationship model is a type of
database model based on the idea of real
world entities and relationship among them.
We can map real world scenario onto ER
database model. ER Model creates a set of
entities with their attributes, a set of relation
among them.

6

7

ER Model is best used for the conceptual
design of database. ER Model can be
represented as follows :

Entity - An entity in ER Model is a real world
being, which has some properties called
attributes. Every attribute is defined by its set
of values, called domain.

For example, Consider a school database. Here,
a student is an entity. Student has various
attributes like name, id, age and class etc.

8

Relationship - The logical association among
entities is called relationship. Relationships are
mapped with entities in various ways. Mapping
cardinalities define the number of associations
between two entities.

Mapping cardinalities:
– one to one
– one to many
– many to one
– many to many

9

Entity/Relationship Diagrams (ERD)
• Primary components identified for the ERD:
– data objects
– attributes
– relationships
– type indicators

• Primary purpose: represent data objects and their
relationships

• Iconography:
– Data objects are represented by a labeled rectangle
– Relationships are indicated with a labeled line

connecting objects
– Connections between data objects and relationships

are established using a variety of special symbols that
indicate cardinality and modality

10

11

Use case –cardinality and
modality example

اعداد
م.م ایناس اسماعیل عمران

cardinality and modality example

customer order

instructor

LOGIN ID

class

STUDENT

places

Teaches

 bank system

Software Design

اعداد
م .م ایناس إسماعیل عمران

1

❑ Software Design Definition

❑ Activities of Software Design

❑ Effective Modular Design

❑ Introduction to Object Oriented Design

❑ Top Down and Bottom up Design

2

Software Design

 Software design is a process to transform user
requirements into some suitable form, which helps
the programmer in software coding and
implementation.

 Software design is the first step in SDLC (Software
Design Life Cycle), which moves the concentration
from problem domain to solution domain. It tries to
specify how to accomplish the requirements
mentioned in SRS.

3

Software Design Definition

Software design has three levels of results:

Architectural Design - The architectural design is the
highest abstract version of the system. It identifies the
software as a system with many components interacting
with each other. At this level, the designers get the idea
of proposed solution domain.

High-level Design- The high-level design breaks the
‘single entity-multiple component’ concept of
architectural design into less-abstracted view of
sub-systems and modules and depicts their interaction
with each other.

4

Activities of Software
Design

 High-level design focuses on how the system along with
all of its components can be implemented in forms of
modules.

Detailed Design- Detailed design deals with the
implementation part of what is seen as a system and its
sub-systems in the previous two designs. It is more
detailed towards modules and their implementations. It
defines logical structure of each module and their
interfaces to communicate with other modules.

5

 Activities of Software
Design

Modularization
 is a technique to divide a software system into multiple

discrete and independent modules, which are expected
to be capable of carrying out task(s) independently.

 These modules may work as basic constructs for the
entire software. Designers tend to design modules such
that they can be executed and/or compiled separately
and independently.

6

Effective Modular Design

Advantage of modularization:

▪ Smaller components are easier to maintain
▪ Program can be divided based on functional aspects
▪ Desired level of abstraction can be brought in the

program
▪ Components with high cohesion can be re-used again
▪ separate execution can be made possible
▪ Desired from security aspect

7

Cohesion
 Cohesion is a measure that defines the degree of

intra-dependability within elements of a module. The
greater the cohesion, the better is the program design.

 Co-incidental cohesion - It is unplanned and random
cohesion, which might be the result of breaking the
program into smaller modules for the sake of
modularization. Because it is unplanned, it may serve
confusion to the programmers and is generally
not-accepted.

8

Coupling and Cohesion

Logical cohesion - When logically categorized
elements are put together into a module, it is called
logical cohesion.

Temporal Cohesion - When elements of module are
organized such that they are processed at a similar point
in time, it is called temporal cohesion.

� Procedural cohesion - When elements of module
are grouped together, which are executed sequentially
in order to perform a task, it is called procedural
cohesion.

9

Coupling and Cohesion

Communicational cohesion - When elements of
module are grouped together, which are executed
sequentially and work on same data (information), it is
called communicational cohesion.

Sequential cohesion - When elements of module are
grouped because the output of one element serves as input
to another and so on, it is called sequential cohesion.

Functional cohesion - It is considered to be the highest
degree of cohesion. Elements of module in functional
cohesion are grouped because they all contribute to a single
well-defined function. It can also be reused.

10

Coupling and Cohesion

Coupling
 Is a measure that defines the level of

inter-dependability among modules of a program. It
tells at what level the modules interfere and interact
with each other. The lower the coupling, the better the
program.

 There are five levels of coupling, namely –

Content coupling - When a module can directly access
or modify or refer to the content of another module, it
is called content level coupling.

Common coupling- When multiple modules have read
and write access to some global data, it is called
common or global coupling.

11

Stamp coupling- When multiple modules share common
data structure and work on different part of it, it is called
stamp coupling.

Data coupling- Data coupling is when two modules
interact with each other by means of passing data (as
parameter). If a module passes data structure as
parameter, then the receiving module should use all its
components.

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.
 Ideally, no coupling is considered to be the best.

12

 Coupling

 Software Design &
Test

اعداد
م.م ایناس إسماعیل

عمران
1

Objects - All entities involved in the solution design are
known as objects. For example, person, banks,
company and customers are treated as objects. Every
entity has some attributes associated to it.

Classes - A class is description of an object. Class
defines all the attributes, which an object can have and
methods, which defines the functionality of the object.

 In the solution design, attributes are stored as variables
and functionalities are defined by means of methods or
procedures.

2

Object Oriented Design

Inheritance – IN OOD, sub-classes can import, so
that re-use allowed for variables and methods from
their immediate super classes. This property of OOD is
known as inheritance. This makes it easier to define
specific class and to create generalized classes from
specific ones.

Polymorphism - OOD languages provide a
mechanism where methods performing similar tasks
but vary in arguments, can be assigned same name.
This is called polymorphism.

3

Object Oriented Design

1. Top Down Design
 We know that a system is composed of more than one

sub-systems and it contains a number of components.
Further, these sub-systems and components may have
their own set of sub-system and components and
creates hierarchical structure in the system.

 Top-down design takes the whole software system as
one entity and then decomposes it to achieve more than
one sub-system or component based on some
characteristics.

4

Software Design
Approaches

 Each sub-system or component is then treated as a
system and decomposed further. This process keeps on
running until the lowest level of system in the top-down
hierarchy is achieved.

 Top-down design is more suitable when the software
solution needs to be designed from scratch and specific
details are unknown.

5

Top Down Design .1

2. Bottom-up Design
 The bottom up design model starts with most specific

and basic components. It proceeds with composing
higher level of components by using basic components.
It keeps creating higher level components until the
desired system as one single component.

 Both, top-down and bottom-up approaches are not

practical individually. Instead, a good combination of
both is used.

6

� Software Testing is evaluation of the software beside requirements
gathered from users and system specifications. Testing is conducted
at the phase level in software development life cycle or at module
level in program code. Software testing include Validation and
Verification.

Why Testing?
Two objectives – Verification and Validation (V&V):
 To uncover errors (or bugs) in the software before delivery to the

client. This is called Verification -Verify that the program is
working.

 To ascertain that the software meet its requirement specification.
This is called Validation – Validate that the software meets its
requirements.

7

 Chapter Six: Software Validation
and Verification

Software Validation
 Validation is process of examining whether or not the

software satisfies the user requirements. It is carried out
at the end of the SDLC. If the software matches
requirements for which it was made, it is validated.

▪ Validation ensures the product under development is as
per the user requirements.

▪ Validation answers the question – "Are we developing
the product which attempts all that user needs from this
software?"

▪ Validation depend on user requirements.

8

Chapter Six: Software
Validation and Verification

Software Verification
Verification is the process of confirming if the software is

meeting the business requirements, and is developed
according to the proper specifications and
methodologies.

▪ Verification ensures the product being developed is
according to design specifications.

▪ Verification answers the question– "Are we developing
this product by firmly following all design
specifications?"

▪ Verifications concentrate on the design and system
specifications.

9

▪ Errors - These are actual coding mistakes made by
developers. In addition, there is a difference in output of
software and desired output, is considered as an error.

▪ Fault - When error exists fault occurs. A fault, also known as
a bug, is a result of an error which can cause system to fail to
perform its required function.

▪ Failure - failure is said to be the inability of the system to
perform the desired function according to its specification.
Failure occurs when fault exists in the system.

10

 : Target of the test are

Software Test

اعداد
م.م ایناس إسماعیل

عمران
1

▪ The goal of testing is to “design a series of test cases”
that has “a high probability of finding errors”.

▪ How? Design test cases systematically by “applying
engineering principles and methods”.

▪ The work product of the testing stage is a “test
report” that documents all the test cases run, i.e., the
test input, the expected output, the actual output, the
purpose of the test and etc.

2

Testing Stage of the Software
Process

3

Testing Stage Details

▪ During the early stages of testing, the developer

performs the tests. As the testing progresses,

independent test specialist may involved.

▪ “Open–source” software like Linux, Java, Apache are

known to be more secure and less buggy because

many independent parties have “tested” the source

code.

4

Who tests the system?

Testing Approaches

Tests can be conducted based on two approaches: –
 -Functionality testing
- Implementation testing

 When functionality is being tested without taking the
actual implementation in concern it is known as
black-box testing. The other side is known as
white-box testing where not only functionality is tested
but the way it is implemented is also analyzed.

5

Software Testing

 It is carried out to test functionality of the program. It is
also called ‘Behavioral’ testing. The tester in this case,
has a set of input values and respective desired results.
On providing input, if the output matches with the
desired results, the program is tested ‘ok’ and
problematic otherwise.

6

Black-box testing

In this testing method, the design and structure of the

code are not known to the tester, and testing engineers
and end users conduct this test on the software.

Black-box testing techniques:
 Equivalence class - The input is divided into similar

classes. If one element of a class passes the test, it is
assumed that all the class is passed.

 Boundary values - The input is divided into higher and
lower end values. If these values pass the test, it is
assumed that all values in between may pass too.

7

Cause-effect graphing - In both previous methods, only

one input value at a time is tested. Cause (input) –

Effect (output) is a testing technique where

combinations of input values are tested in a systematic

way.

State-based testing - The system changes state on terms

of input. These systems are tested based on their states

and input.

8

 It is conducted to test program and its implementation, in order to
improve code efficiency or structure. It is also known as ‘Structural’
testing. The design and structure of the code are known to the tester.
Programmers conduct this test on the code.

The below are some White-box testing techniques:
 Control-flow testing - The purpose of it is to set up test cases

which cover all statements and branch conditions. The branch
conditions are tested for both being true and false, so that all
statements can be covered.

9

White-box testing

� Data-flow testing – which cover all the data variables
included in the program. It tests where the variables
were declared and defined and where they were used or
changed.

Testing Levels
 Unit Testing
 The programmer performs some tests on unit of program

to know if it is error free. Testing is performed under
white-box testing approach. Unit testing helps developers
decide that individual units of the program are working as
per requirement and are error free.

10

Integration Testing
 There is a need to find out if the units if integrated together

would also work without errors.

System Testing
 The software is compiled as product and then it is tested as

a whole. This can be accomplished using one or more of the
following tests:
Functionality testing - Tests all functionalities of the
software against the requirement.
Performance testing - This test proves how efficient the
software is. It tests the effectiveness and average time taken
by the software to do desired task.

11

Testing Levels

Alpha testing - The team of developer themselves
perform alpha testing by using the system as if it is
being used in work environment. They try to find out
how user would react to some action in software and
how the system should respond to inputs.

Beta testing - After the software is tested internally, it is
handed over to the users to use it under their production
environment only for testing purpose. This is not as yet
the delivered product. Developers expect that users at
this stage will bring minute problems, which were
skipped to attend.

12

Acceptance Testing

