

جامعة بغداد كلية التربية للعلوم الصرفة ابن الهيثم قسم الرياضيات/ المرحلة الاولى مادة التفاضل والتكامل

# الفصل الخامس

# الدوال المثلثية Trigonometric Functions

# اعضاء التدريس

- أ.م.د. ايمان محد نعمه
  - ۔ أم اريج صلاح محد
- م. حنان فاروق قاسم

# **CHAPTER FIVE: Trigonometric Functions**

We will define six trigonometric functions in terms of the central angle  $\theta$  drawn in the center circle (0,0) and radius r.

In the central angle  $\theta$  with one of its sides is applied to the x-axis and the other side is drawn from the origin point and cut the circumference of the circle at the point p(x, y), then:

- Sine:  $\sin \theta = \frac{y}{r}$
- Cosine:  $\cos \theta = \frac{x}{r}$
- Tangent:  $\tan \theta = \frac{y}{x}$
- Cotangent:  $\cot \theta = \frac{x}{y}$
- Secant:  $\sec \theta = \frac{r}{x}$
- Cosecant:  $\csc \theta = \frac{r}{v}$

From the previous definition definitions, a relation can be found between trigonometric functions as follows:

\* 
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

\* 
$$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta} = \frac{\csc \theta}{\sec \theta}$$

\* 
$$\sec \theta = \frac{1}{\cos \theta}$$

\* 
$$\csc \theta = \frac{1}{\sin \theta}$$

And since the equation of the circle center (0,0) and radius r is:

$$x^{2} + y^{2} = r^{2}$$

$$\therefore x = r \cos \theta \quad and \quad y = r \sin \theta$$

**Trigonometric Identities** 

$$\Rightarrow r^{2} \cos^{2}\theta + r^{2} \sin^{2}\theta = r^{2}$$

$$\Rightarrow r^{2} (\cos^{2}\theta + \sin^{2}\theta) = r^{2}$$

$$\Rightarrow \cos^{2}\theta + \sin^{2}\theta = 1 \qquad \dots (1)$$

**Note:** From the above equation, we can derive the following forms:

• If we divide eq.(1) by  $\cos^2 \theta$ :

$$\Rightarrow$$
 1 +  $tan^2\theta$  =  $sec^2\theta$ 

• If we divide eq.(1) by  $sin^2\theta$ :

$$\Rightarrow cot^2\theta + 1 = csc^2\theta$$

#### **Laws of Sum and Subtract Two Angles:**

Let A and B be any two angles, then:

$$* \cos(A+B) = \cos A \cos B - \sin A \sin B$$

\* 
$$cos(A - B) = cos A cos B + sin A sin B$$

$$*$$
 si n(A + B) = si n Aco s B + sin Bcos A

\* 
$$\sin(A - B) = \sin A \cos B - \sin B \cos A$$

\* 
$$tan(A \mp B) = \frac{tan A \mp tan B}{1 \pm tan A tan B}$$

**Note:** Now, we can use the laws of sum and subtract two angles to derive the following forms:

• 
$$\sin(2\theta) = \sin(\theta + \theta) = \sin\theta\cos\theta + \sin\theta\cos\theta$$
  
 $\Rightarrow \sin(2\theta) = 2\sin\theta\cos\theta$  ...(2)

• 
$$\cos(2\theta) = \cos(\theta + \theta) = \cos\theta\cos\theta - \sin\theta\sin\theta$$
  
 $\Rightarrow \cos(2\theta) = \cos^2\theta - \sin^2\theta \qquad ...(3)$ 

**Note:** From eq.(1) and eq (3), we can derive the following:

- eq.(1) + eq. (3)  $\Rightarrow$  2cos<sup>2</sup>  $\theta$  = 1 + cos 2 $\theta$
- eq.(1) eq. (3)  $\Rightarrow$  2sin<sup>2</sup>  $\theta = 1 \cos 2\theta$

**Remark:** Trigonometric function are divided into two types (Odd Functions and Even Functions) as follows:

#### \*Odd Functions:

$$\sin(-\theta) = -\sin\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\cot(-\theta) = -\cot\theta$$

$$\csc(-\theta) = -\csc\theta$$

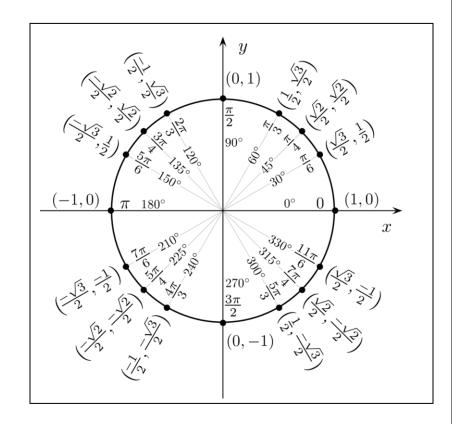
#### \* Even Functions:

$$\cos(-\theta) = \cos\theta$$

$$\sec(-\theta) = \sec\theta$$

**Rules:**  $\sin \theta$ ,  $\cos \theta$  and  $\tan \theta$  for some standard angles:

| θ             | $0=2\pi$ | $\frac{\pi}{2}$ | π  | $\frac{3\pi}{2}$ |
|---------------|----------|-----------------|----|------------------|
| $\sin \theta$ | 0        | 1               | О  | -1               |
| $\cos \theta$ | 1        | O               | -1 | О                |
| $\tan \theta$ | 0        | 8               | О  | 8                |



| θ             | $\frac{\pi}{6} = 30^{\circ}$ | $\frac{\pi}{4} = 45^{\circ}$ | $\frac{\pi}{3} = 60^{\circ}$ |
|---------------|------------------------------|------------------------------|------------------------------|
| $\sin \theta$ | $\frac{1}{2}$                | $\frac{1}{\sqrt{2}}$         | $\frac{\sqrt{3}}{2}$         |
| $\cos \theta$ | $\frac{\sqrt{3}}{2}$         | $\frac{1}{\sqrt{2}}$         | $\frac{1}{2}$                |
| $\tan \theta$ | $\frac{1}{\sqrt{3}}$         | 1                            | $\sqrt{3}$                   |

**Rules:** The  $\sin \theta$ ,  $\cos \theta$ , and  $\tan \theta$  take positive and negative signs depends on the position in which quarter.

**Problems (5.1):** Dear student you can use the addition or subtraction laws for two angles for the functions *sin* and *cos* to prove that:

1. 
$$cos(\theta + 2\pi) = cos(\theta)$$

2. 
$$sin(\theta + 2\pi) = sin(\theta)$$

$$3. \tan(\theta + 2\pi) = \tan(\theta)$$

$$4. \cot(\theta + 2\pi) = \cot(\theta)$$

$$5. \sec(\theta + 2\pi) = \sec(\theta)$$

$$6. \csc(\theta + 2\pi) = \csc(\theta)$$

$$7.\cos(\theta + \pi/2) = -\sin(\theta)$$

$$8. \cos(\theta - \pi/2) = \sin(\theta)$$

$$9. \sin(\theta + \pi/2) = \cos(\theta)$$

$$10. \sin(\theta - \pi/2) = -\cos(\theta)$$

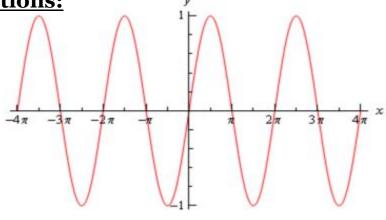
# **Graphs of Trigonometric Functions:**

#### 1. $y = \sin \theta$

Domain:  $= \mathbb{R}$ 

Range: = [-1,1]

Period: =  $2\pi$ 

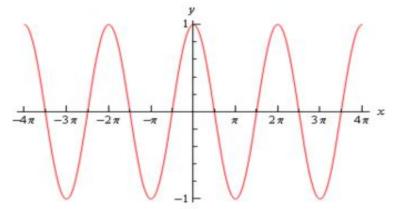


# 2. $y = \cos \theta$

Domain:  $= \mathbb{R}$ 

Range: = [-1,1]

Period : =  $2\pi$ 

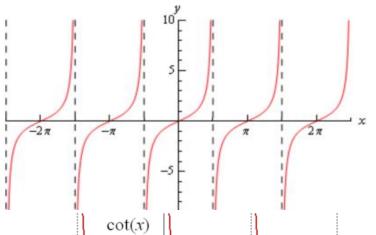


# 3. $y = \tan \theta$

Domain: =  $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi : n = 0, \mp 1, \mp 2, \dots \right\}$ 

Range :  $= \mathbb{R}$ 

Period:  $= \pi$ 

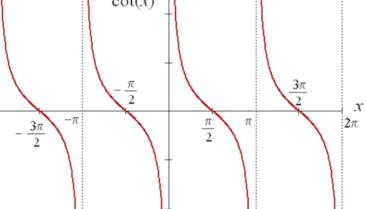


#### **4.** $y = \cot \theta$

Domain: =  $\mathbb{R} \setminus \{n\pi: n = 0, \mp 1, \mp 2, ...\}_{-2\pi}$ 

Range : =  $\mathbb{R}$ 

Period:  $= \pi$ 

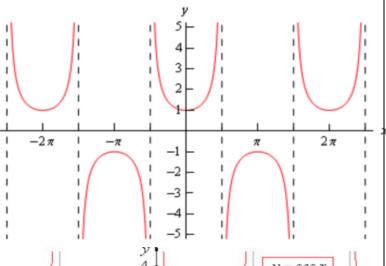


**5.** 
$$y = \sec \theta$$

Domain: =  $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + n\pi : n = 0, \mp 1, \mp 2, \dots \right\}$ 

Range: =  $\mathbb{R} \setminus (-1,1)$ 

Period: =  $2\pi$ 

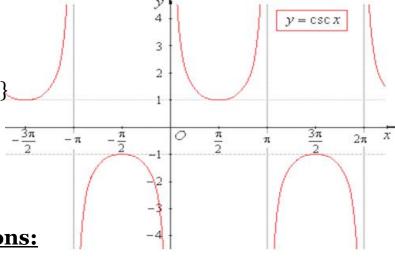


## 6. $y = \csc \theta$

Domain: =  $\mathbb{R} \setminus \{n\pi: n = 0, \mp 1, \mp 2, \dots\}$ 

Range: =  $\mathbb{R} \setminus (-1,1)$ 

Period: =  $2\pi$ 



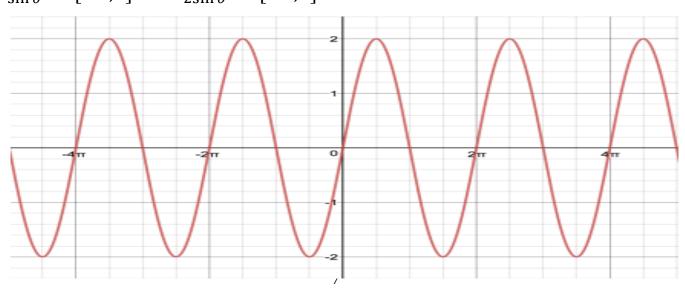
# **Shifting Trigonometric Functions:**

**Examples:** Plot the following functions:

(1) 
$$y = 2\sin\theta$$

 $:D_{\sin\theta}:=\mathbb{R}\Longrightarrow D_{2\sin\theta}:=\mathbb{R}$ 

 $R_{\sin \theta} := [-1,1] \implies R_{2\sin \theta} := [-2,2]$ 

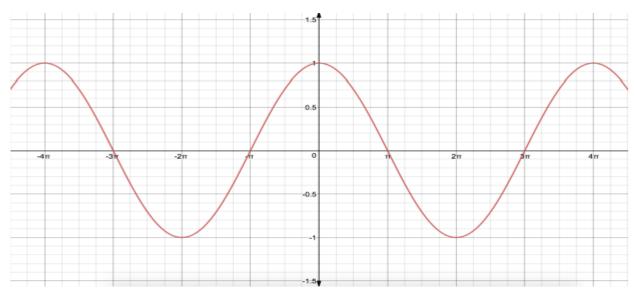


(2) 
$$y = \cos \frac{\theta}{2}$$

$$: D_{\cos \theta} := \mathbb{R} \Longrightarrow D_{\cos \frac{\theta}{2}} := \mathbb{R}$$

but, 
$$\because -2\pi \le \frac{\theta}{2} \le 2\pi \implies -4\pi \le \theta \le 4\pi$$

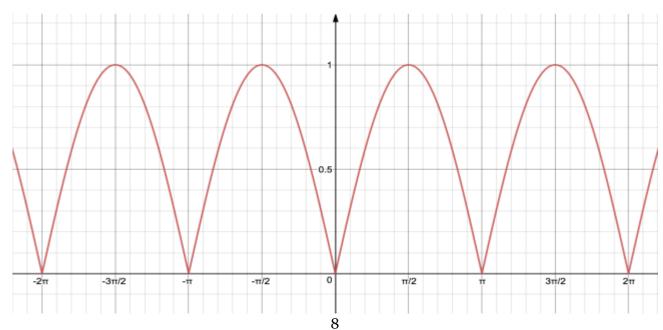
$$: R_{\cos \theta} := [-1,1] \implies R_{\cos \frac{\theta}{2}} := [-1,-1]$$



(3) 
$$y = |\sin \theta|$$

$$\because D_{\sin\theta} := \mathbb{R} \quad \Longrightarrow D_{|\sin\theta|} := \mathbb{R}$$

$$: R_{\sin \theta} := [-1,1] \implies R_{|\sin \theta|} := [0,1]$$

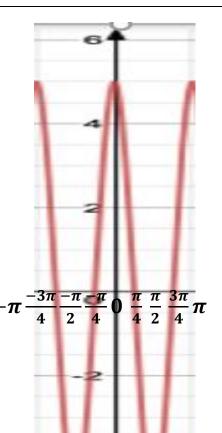


### $(4) y = 5\cos(2\theta)$

$$:D_{\cos\theta}:=\mathbb{R} \implies D_{5\cos(2\theta)}:=\mathbb{R}$$

but, 
$$\because -2\pi \le 2\theta \le 2\pi \Longrightarrow -\pi \le \theta \le \pi$$

$$R_{cos} := [-1,1] \Rightarrow R_{5cos(2\theta)} := [-5,5]$$



#### **Problems (5.2):**

**Q1**/ Sketch the graph the following functions:

1) 
$$y = \sin\left(\frac{\theta}{2}\right)$$

$$7) y = 1 + \cos(-x)$$

$$2) y = \cos(3\theta)$$

$$8) y = \cos\left(x - \frac{\pi}{2}\right) - 1$$

3) 
$$y = 1 + \sin(\theta)$$

9) 
$$y = \cos\left(\frac{x}{2}\right) + 2$$

$$4) y = \frac{1 + \cos(2\theta)}{2}$$

$$10) y = \left|\cos x\right| - 1$$

$$5) y = |\sin(4\theta)|$$

$$11) y = -\sin(-x)$$

$$6) y = 2\sin(\theta + \pi)$$

Q2/Prove that:

a) 
$$\sin^2 \theta + \cos^2 \theta + \tan^2 \theta = \sec^2 \theta$$
 b)  $\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \cdot \sin^2 \theta$ 

b) 
$$\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \cdot \sin^2 \theta$$

$$c) \sqrt{\frac{1 + \tan^2 \theta}{1 + \cot^2 \theta}} = \tan \theta$$

$$c) \sqrt{\frac{1+\tan^2\theta}{1+\cot^2\theta}} = \tan\theta \qquad \qquad d) \sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta \qquad e) \frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$$

$$e)\frac{1-\tan^2\theta}{1+\tan^2\theta}=\cos 2\theta$$

#### **Limits of Trigonometric Functions:**

#### **Theorems:**

$$1. \quad \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

$$2. \quad \lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$

Result: 
$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1$$

proof:

$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = \lim_{\theta \to 0} \frac{\frac{\sin \theta}{\cos \theta}}{\theta}$$

$$= \lim_{\theta \to 0} \left( \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta} \right)$$

$$= \left( \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \right) \cdot \left( \lim_{\theta \to 0} \frac{1}{\cos \theta} \right)$$

$$= (1) \cdot \left( \frac{1}{\cos(0)} \right) = 1$$

**Examples:** Find the following limits?

$$(1) \lim_{t\to 0} \frac{\sin 3t}{t}$$

$$\lim_{t \to 0} \frac{\sin 3t}{t} = \lim_{t \to 0} \frac{3 \cdot \sin 3t}{3 \cdot t} = 3 \cdot \lim_{t \to 0} \frac{\sin 3t}{3t} = 3.1 = 3$$

(2) 
$$\lim_{x\to\infty} x \cdot \sin\frac{1}{x}$$

Let 
$$y = \frac{1}{x} \Longrightarrow x = \frac{1}{y}$$

$$: x \to \infty \Longrightarrow y \to 0$$

Hence, 
$$\lim_{x\to\infty} x \cdot \sin\frac{1}{x} = \lim_{y\to 0} \frac{1}{y} \cdot \sin y = \lim_{y\to 0} \frac{\sin y}{y} = 1$$

(3) 
$$\lim_{x \to 0} \frac{1 - \cos x}{2x}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{2x} = \lim_{x \to 0} \frac{-1}{2} \cdot \frac{\cos x - 1}{x} = \frac{-1}{2} \cdot \lim_{x \to 0} \frac{\cos x - 1}{x} = \frac{-1}{2} \cdot 0 = 0$$

$$(4) \lim_{h\to 2} \frac{\cos\left(\frac{\pi}{h}\right)}{h-2}$$

$$\lim_{h \to 2} \frac{\cos\left(\frac{\pi}{h}\right)}{h - 2} = \frac{0}{0}$$

$$\lim_{h \to 2} \frac{\cos\left(\frac{\pi}{h}\right)}{h - 2} \stackrel{L'R}{=} \lim_{h \to 2} \frac{-\sin\left(\frac{\pi}{h}\right) \cdot \frac{h \cdot 0 - \pi \cdot 1}{h^2}}{1 - 0} = -\lim_{h \to 2} \left(-\sin\left(\frac{\pi}{h}\right) \cdot \frac{\pi}{h^2}\right)$$

$$= -\sin\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{4} = -1 \cdot \frac{-\pi}{4} = \frac{\pi}{4}$$

$$(5) \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{1 + \cos(2\theta)}$$

$$\lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{1 + \cos(2\theta)} = \frac{0}{0}$$

$$\lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{1 + \cos(2\theta)} \stackrel{L'R}{=} \lim_{\theta \to \frac{\pi^2}{2}} \frac{-\cos \theta}{-2\sin(2\theta)}$$

$$= \frac{1}{2} \cdot \lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{\sin(2\theta)}$$

$$\stackrel{L'R}{=} \frac{-1}{2} \cdot \lim_{\theta \to \frac{\pi}{2}} \frac{-\sin \theta}{2\cos(2\theta)}$$

$$= \frac{-1}{4} \lim_{\theta \to \frac{\pi}{2}} \frac{\sin \theta}{\cos(2\theta)} = \frac{-1}{4} \cdot \frac{\sin \left(\frac{\pi}{2}\right)}{\cos \left(\frac{\pi}{2}\right)} = \frac{-1}{4} \cdot \frac{1}{-1} = \frac{1}{4}$$

**Problems (5.3):** Evaluate the following limits, if it exist?

$$1. \lim_{w\to 0} \frac{3\sin(5w)}{7w}$$

$$2. \lim_{x\to 0} \frac{\sin(3x)}{x\cos(5x)}$$

$$7. \lim_{z \to 0} (\tan(2z) \cdot \csc(4z))$$

$$3. \lim_{t\to 0} \frac{5t}{\tan(6t)}$$

8. 
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2}$$

4. 
$$\lim_{\theta \to 0} \frac{\sec \theta - \cos \theta}{\theta^2}$$

9. 
$$\lim_{t\to 0} \frac{-2\tan t}{5t}$$

$$5. \quad \lim_{x \to 0} \frac{1 - \cos^2 x}{2x^2}$$

$$10. \lim_{y\to 0} \frac{1-\cos y}{\sin y}$$

6. 
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta \cdot \sin \theta}$$

Q2/Proof the following:

(a) 
$$\lim_{\theta \to \frac{\pi}{2}} \frac{\sin \theta - 1}{\cos \theta} = 0$$

(a) 
$$\lim_{\theta \to \frac{\pi}{2}} \frac{\sin \theta - 1}{\cos \theta} = 0$$
 (b)  $\lim_{w \to -4} \frac{\sin(\pi w)}{w^2 - 16} = -\frac{\pi}{8}$ 

### **Differentiation of Trigonometric Functions:**

Let u be a function of x, then:

1. 
$$\frac{d}{dx}(\sin(u)) = \cos(u) \cdot \frac{du}{dx}$$

2. 
$$\frac{d}{dx}(\cos(u)) = -\sin(u) \cdot \frac{du}{dx}$$

3. 
$$\frac{d}{dx}(\tan(u)) = \sec^2(u) \cdot \frac{du}{dx}$$

4. 
$$\frac{d}{dx}(\cot(u)) = -\csc^2(u) \cdot \frac{du}{dx}$$

5. 
$$\frac{d}{dx}(\sec(u)) = \sec(u) \cdot \tan(u) \cdot \frac{du}{dx}$$

6. 
$$\frac{d}{dx}(\csc(u)) = -\csc(u) \cdot \cot(u) \cdot \frac{du}{dx}$$

**Examples:** Find the derivatives of the following functions?

$$(1) \quad y = \frac{\sin x}{x}$$

$$\frac{dy}{dx} = \frac{x \cdot \cos x - \sin x - 1}{x^2} = \frac{x \cos x - \sin x}{x^2}$$

$$(2) \quad y = \frac{2}{\cos(3t)}$$

$$\frac{dy}{dt} = \frac{\cos(3t) \cdot 0 - 2 \cdot (-\sin(3t) \cdot 3)}{\cos^2(3t)} = \frac{6\sin(3t)}{\cos^2(3t)}$$

$$(3) \quad y = \cot(z^2)$$

$$\frac{dy}{dz} = -\csc^2(z^2) \cdot 2z$$

$$(4) y = \sec^2(5x)$$

$$\frac{dy}{dx} = 2 \cdot \sec(5x) \cdot \sec(5x) \cdot \tan(5x) \cdot 5 = 10\sec^2(5x) \cdot \tan(5x)$$

(5) 
$$y = \sin(\cos w)$$

$$\frac{dy}{dw} = \cos(\cos w) \cdot (-\sin w) \cdot 1 = \cos(\cos w) \cdot -\sin w$$

**Problems (5.4):** Find the derivative of the following functions?

$$1. \quad y = \left(\frac{\sin\sqrt{x}}{\sqrt{x}}\right)^3$$

2. 
$$y = 4\cos^2(-3w)$$

$$3. \quad y = \sin^2\left(\frac{3}{z}\right) + \cos^2(z^2)$$

4. 
$$y = \sqrt[3]{9x + \cos(2x)}$$

$$5. \quad y = \frac{\sqrt{2t}}{\cos(3t)}$$

6. 
$$y = x^3 \cdot \sin(2x^2 + 3)$$

7. 
$$y = \left(\cos^2(1+t) + \sqrt{t+5}\right)^5$$

8. 
$$y = \frac{7\sqrt{\sec(3\theta)}}{\theta^2}$$

9. 
$$y = 2\sin\left(\frac{z}{2}\right) - \left(z\cos\left(\frac{2}{z}\right)\right)^3$$

$$10. \ y = \sin(3t) \cdot \cos(5t^2)$$

### <u>Implicit Differentiation of Trigonometric Functions:</u>

**Examples:** Find y' of the following functions?

(1) 
$$x\sin(2y) = y \cdot \cos(2x)$$

$$\Rightarrow x \cdot \cos(2y) \cdot 2y' + \sin(2y) \cdot 1 = y \cdot (-\sin(2x)) \cdot 2 + \cos(2x) \cdot y'$$

$$\Rightarrow x \cdot \cos(2y) \cdot 2y' - \cos(2x) \cdot y' = y \cdot (-\sin(2x)) \cdot 2 - \sin(2y)$$

$$\Rightarrow (2x \cdot \cos(2y) - \cos(2x)) \cdot y' = -2y \cdot \sin(2x) - \sin(2y)$$

$$\Rightarrow y' = \frac{-2y \cdot \sin(2x) - \sin(2y)}{(2x \cdot \cos(2y) - \cos(2x))}$$

$$(2) \cot(xy) + xy = 0$$

$$\Rightarrow$$
  $-\csc^2(xy)(xy'+y\cdot 1)+xy'+y=0$ 

$$\Rightarrow$$
  $-x \csc^2(xy)y' - y \csc^2(xy) + xy' + y = 0$ 

$$\Rightarrow (-x\csc^2(xy) + x)y' = y\csc^2(xy) - y$$

$$\Rightarrow y' = \frac{y\csc^2(xy) - y}{-x\cos^2(xy) + x}$$

$$\Rightarrow y' = \frac{y(\cos^2(xy) - 1)}{-x(\csc^2(xy) - 1)}$$

$$\Rightarrow y' = -\frac{y}{x}$$

**Problems (5.5):** Find y' of the following functions?

$$1. \quad y \sin x + x \sin y = y^2$$

2. 
$$\sec^2 y + \csc^2 y = 4x$$

3. 
$$y = \tan(x + y)$$

4. 
$$y^2 = \sin^4(2x) + \cos^4(2x)$$

5. 
$$\cos(x^2y^2) = x$$

$$6.x^2y = \frac{\cot y}{1 + \cos y}$$

$$7. \quad \sqrt{xy} + \csc(-xy) = y$$

$$8. y(3 + \tan y)^{\frac{1}{3}} = x + 5$$

9. 
$$y = \tan y + \sec^2(xy) + \cot(x^2 + y^2)$$
  $10.x^2 = \sin y + \sin(2y)$ 

$$10.x^2 = \sin y + \sin(2y)$$

#### The Inverse Trigonometric Functions:

Suppose f be a one-to-one (i.e. 1-1) and onto function.

$$f: X \longrightarrow Y$$

• 
$$f \text{ is } 1 - 1 \iff x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

$$\stackrel{OR}{\Leftrightarrow} f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

- f is onto  $\Leftrightarrow \forall y \in Y \exists x \in X \ni y = f(x)$
- $f: X \to Y \ni y = f(x) \Leftrightarrow f^{-1}: Y \to X \ni x = f^{-1}(y)$

#### (1) The Inverse of Sine Function:

Let 
$$y = \sin(x)$$
,  $\sin(x)$ :  $\mathbb{R} \to [-1,1]$ 

We are going to define a new function which is inverse sine, and we denote it by  $\sin^{-1}$  or arcsin.

$$\therefore \sin^{-1} y = \sin^{-1}(\sin x) \Longrightarrow \sin^{-1} y = x$$

$$\therefore y = \sin x \iff x = \sin^{-1} y$$

$$\sin(x): \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \Longrightarrow [-1, 1]$$

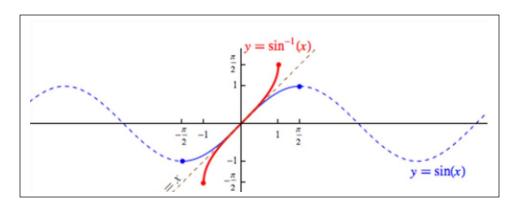
$$\because \sin is \ 1 - 1 \ and \ onto \Rightarrow \exists \ \sin^{-1} \ni \sin^{-1} \colon [-1,1] \Rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$D_{\sin^{-1}} = [-1,1] = R_{\sin x}$$



$$R_{\sin^{-1}} = \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] = D_{\sin x}$$

Note:  $\sin^{-1}(x) \neq \frac{1}{\sin(x)}$ 



**Remark**:  $\sin^{-1} is$  an odd function. (i.e.,  $\sin^{-1}(-x) = -\sin^{-1}(x)$ )

## (2) The Inverse of Cosine Function:

Let 
$$y = \cos(x)$$
,  $\cos(x)$ :  $\mathbb{R} \to [-1,1]$ 

We are going to define a new function which is inverse cosine, and we denote it by  $\cos^{-1}$  or arccos.

$$\therefore \cos^{-1} y = \cos^{-1}(\cos x) \Longrightarrow \cos^{-1} y = x$$

$$\therefore y = \cos x \iff x = \cos^{-1} y$$

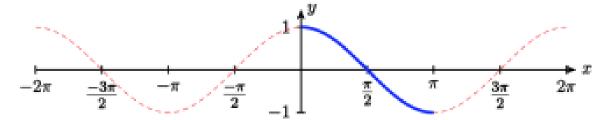
$$cos: [0, \pi] \Longrightarrow [-1, 1]$$

 $\because cos \ is \ 1 - 1 \ and \ onto \implies \exists cos^{-1} \ni$ 

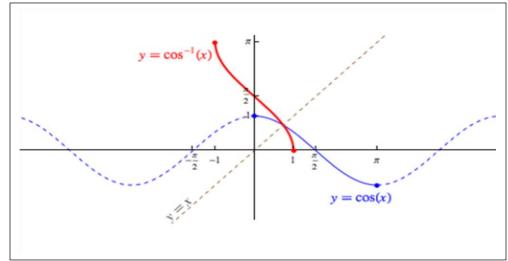
$$\cos^{-1}$$
:  $[-1,1] \Rightarrow [0,\pi]$ 

$$D_{\cos^{-1}} = [-1,1] = R_{\cos x}$$

$$R_{\cos^{-1}} = [0, \pi] = D_{\cos x}$$



Note:  $\cos^{-1}(x) \neq \frac{1}{\cos(x)}$ 



**Remark:**  $\cos^{-1}$  is neither even nor odd function.

Note: 
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$

# (3) The Inverse of Tangent Function:

Let 
$$y = \tan(x)$$
,  $\tan(x)$ :  $\mathbb{R} \setminus \left\{ x : x = \frac{\pi}{2} + n\pi; n \in \mathbb{I} \right\} \longrightarrow \mathbb{R}$ 

We are going to define a new function which is inverse tangent, and we denote it by  $tan^{-1}$  or arctan.

$$\therefore \tan^{-1} y = \tan^{-1}(\tan x) \Longrightarrow \tan^{-1} y = x$$

$$\therefore y = \tan x \Longleftrightarrow x = \tan^{-1} y$$

$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$$

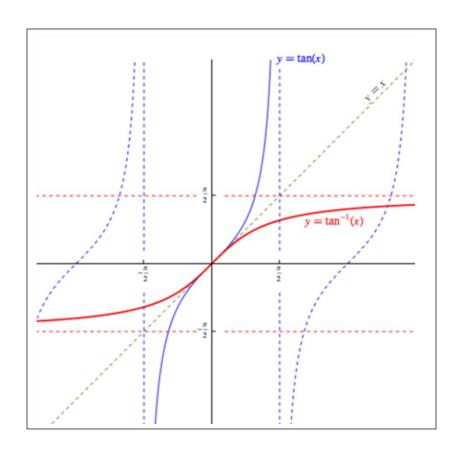
 $\because \tan is \ 1 - 1 \ and \ onto, \Longrightarrow \exists \tan^{-1} \ni$ 

$$\tan^{-1}: \mathbb{R} \longrightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$D_{\tan^{-1}} = \mathbb{R} = R_{\tan x}$$

$$R_{\tan^{-1}} = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = D_{\tan x}$$

Note:  $\tan^{-1}(x) \neq \frac{1}{\tan(x)}$ 



**Remark:**  $tan^{-1}$  is an odd function. **i**. **e**,  $(tan^{-1}(-x) = -tan^{-1}(x))$ 

#### **The Derivative of Inverse Trigonometric Functions:**

Let u be a function of x, then:

1. 
$$\frac{d}{dx}\left(\sin^{-1}(u)\right) = \frac{1}{\sqrt{1-u^2}}\cdot\frac{du}{dx}$$

2. 
$$\frac{d}{dx}\left(\cos^{-1}(u)\right) = \frac{-1}{\sqrt{1-u^2}}\cdot\frac{du}{dx}$$

3. 
$$\frac{d}{dx}\left(tan^{-1}(u)\right) = \frac{1}{1+u^2} \cdot \frac{du}{dx}$$

4. 
$$\frac{d}{dx}\left(cot^{-1}(u)\right) = \frac{-1}{1+u^2} \cdot \frac{du}{dx}$$

5. 
$$\frac{d}{dx}\left(sec^{-1}(u)\right) = \frac{1}{|u|\sqrt{u^2-1}}\cdot\frac{du}{dx}$$

6. 
$$\frac{d}{dx}\left(csc^{-1}(u)\right) = \frac{-1}{|u|\sqrt{u^2-1}} \cdot \frac{du}{dx}$$

**Examples:** Find the derivatives of the following functions:

(1) 
$$f(x) = \sin^{-1}(x^2)$$

$$\Rightarrow f'(x) = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot 2x$$

$$(2) \quad g(t) = \cos^{-1}(\sqrt{t})$$

$$\Rightarrow g'(t) = \frac{-1}{\sqrt{1 - (\sqrt{t})^2}} \cdot \frac{1}{2} t^{\frac{-1}{2}}$$

$$(3) y = \sin^{-1} \sqrt{1 - \sqrt{\theta}}$$

$$\Rightarrow y' = \frac{1}{\sqrt{1 - (\sqrt{1 - \sqrt{\theta}})^2}} \cdot \frac{1}{2} (1 - \sqrt{\theta})^{\frac{-1}{2}} \cdot \frac{1}{2} \theta^{\frac{-1}{2}}$$

$$(4) f(x) = \cot^{-1}\left(\frac{1-x}{1+x}\right)$$

$$\Rightarrow f'(x) = \frac{1}{1+\left(\frac{1-x}{1+x}\right)^2} \cdot \frac{(1+x)\cdot(-1)-(1-x)\cdot 1}{(1+x)^2}$$

(5) 
$$g(x) = \sec^{-1}\left(\frac{\sqrt{1+x^2}}{x}\right)$$

$$\Rightarrow g'(x) = \frac{1}{\left|\frac{\sqrt{1+x^2}}{x}\right| \sqrt{\left(\frac{1+x^2}{x}\right)^2 - 1}} \cdot \frac{x \cdot \frac{1}{2}(1+x^2)^{-\frac{1}{2}} \cdot 2x - \sqrt{1+x^2} \cdot 1}{x^2}$$

(6) 
$$y = x \cdot \csc^{-1}\left(\frac{1}{x}\right) + \sqrt{1 - x^2}$$
  

$$\Rightarrow y' = x \cdot \frac{-1}{\left|\frac{1}{x}\right| \sqrt{\frac{1}{x^2} - 1}} \cdot \frac{x \cdot 0 - 1.1}{x^2} + \csc^{-1}\left(\frac{1}{x}\right) \cdot 1 + \frac{1}{2}(1 - x^2)^{\frac{-1}{2}} \cdot -2x$$

#### **Problems (5.6):**

1 Find y' of the following functions?

(a) 
$$y = \sin^{-1}\left(\frac{x-1}{x+1}\right)$$

(b) 
$$y = \theta \cdot (\sin^{-1}(\theta))^2 - 2\theta + 2\sqrt{1-\theta} \cdot \sin^{-1}(\theta)$$

(c) 
$$y = t \cdot \cos^{-1}(2t) - \frac{1}{2}\sqrt{1 - 4t^2}$$

(d) 
$$y = \frac{\cos^{-1}(2x)}{\sqrt{1+4x^2}}$$

(e) 
$$y = \cos^{-1}\left(\frac{3}{t}\right) + \frac{t}{1-t^2}$$

(f) 
$$y = \sec^{-1}(\sqrt{w^2 + 4})$$

$$(g) y = \sin(\tan^{-1} x)$$

$$(h) y = \tan^{-1}(3\tan 2z)$$

(i) 
$$y = \sec^{-1}(5x^2)$$

(j) 
$$y = \frac{\cot^{-1}(3\theta)}{1 + \theta^2}$$

2 Find y' of the following functions?

(a) 
$$x\sin y + x^3 = \tan^{-1} y$$

(b) 
$$\sin^{-1}(xy) = \cos^{-1}(x+y)$$

(c) 
$$\cos 3y - \cos^{-1}(y) - \frac{\sin x}{2x} = 0$$

#### **Algebra of Inverse Trigonometric Functions:**

Some properties for the inverse trigonometric functions:

$$* \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right)$$

\* 
$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right)$$

$$* csc^{-1}(x) = sin^{-1}\left(\frac{1}{x}\right)$$

#### **Examples:** Evaluate the following:

$$1 \cos\left(\cos^{-1}\left(\frac{1}{2}\right)\right) = ?$$

$$\therefore \cos\left(\cos^{-1}\left(\frac{1}{2}\right)\right) = \cos\cos^{-1}\left(\frac{1}{2}\right) = I\left(\frac{1}{2}\right) = \frac{1}{2}$$

$$2 \sin\left(\cos^{-1}\frac{\sqrt{2}}{2}\right) = ?$$

Let 
$$\alpha = \cos^{-1} \frac{\sqrt{2}}{2}$$

$$\Rightarrow \alpha = \cos^{-1} \frac{1}{\sqrt{2}} \Rightarrow \cos \alpha = \frac{1}{\sqrt{2}} \Rightarrow \alpha = \frac{\pi}{4} = 45^{\circ}$$

$$\therefore \sin\left(\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$3 \csc(\sec^{-1}(2)) = ?$$

Let 
$$\alpha = \sec^{-1}(2)$$

$$\Rightarrow \alpha = \sec^{-1}(2) = \cos^{-1}\left(\frac{1}{2}\right) \Rightarrow \cos\alpha = \frac{1}{2} \Rightarrow \alpha = \frac{\pi}{3} = 60^{\circ}$$

$$\therefore \csc(\sec^{-1}(2)) = \csc\left(\frac{\pi}{3}\right) = \frac{1}{\sin\left(\frac{\pi}{3}\right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$$

$$4 \cot \left( \sin^{-1} \left( \frac{1}{2} \right) \right) = ?$$

Let 
$$\alpha = \sin^{-1}\frac{1}{2} \implies \sin \alpha = \frac{1}{2} \implies \alpha = \frac{\pi}{6}$$

$$\therefore \cot\left(\sin^{-1}\left(\frac{1}{2}\right)\right) = \cot\left(\frac{\pi}{6}\right) = \cot\frac{\pi}{6}$$

$$= \frac{\cos\frac{\pi}{6}}{\sin\frac{\pi}{6}} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$

$$5 \cos \left( \sin^{-1} \left( \frac{8}{10} \right) \right) = ?$$

Let 
$$\alpha = \sin^{-1}\left(\frac{8}{10}\right) \Longrightarrow \sin \alpha = \frac{8}{10} \Longrightarrow \sin^2 \alpha = \frac{64}{100}$$

$$\because \cos^2 \alpha = 1 - \sin^2 \alpha \Longrightarrow \cos^2 \alpha = 1 - \frac{64}{100} = \frac{36}{100}$$

$$\Rightarrow \cos(\alpha) = \frac{6}{10}$$

6 
$$\cos\left(\sin^{-1}\left(\frac{1}{3}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) = ?$$

Let 
$$\alpha = \sin^{-1}\left(\frac{1}{3}\right) \Longrightarrow \sin \alpha = \frac{1}{3}$$

Let 
$$\beta = \tan^{-1}\left(\frac{1}{2}\right) \Longrightarrow \tan \beta = \frac{1}{2}$$

$$\because \cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

$$\therefore \cos\left(\sin^{-1}\left(\frac{1}{3}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) = \cos(\alpha - \beta)$$

$$= cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)$$

$$= \frac{2\sqrt{2}}{3} \cdot \frac{2}{\sqrt{5}} + \frac{1}{3} \cdot \frac{1}{\sqrt{5}} = \frac{4\sqrt{2} + 1}{3\sqrt{5}}$$

### **Problems (5.7):** Evaluate the following?

1. 
$$\sec\left(\cos^{-1}\left(\frac{1}{2}\right)\right)$$

$$4.\csc\left(\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)\right)$$

2. 
$$\cos(\cot^{-1}(1))$$

5. 
$$\cos^{-1}\left(-\sin\left(\frac{\pi}{6}\right)\right)$$

3. 
$$\tan\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$$

6. 
$$\cos\left(\cos^{-1}\left(\frac{3}{4}\right) - \cot^{-1}\left(\frac{1}{4}\right)\right)$$

#### **Hyperbolic Functions:**

$$1. \ \sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$2. \quad \cosh(x) = \frac{e^x + e^{-x}}{2}$$

3. 
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

4. 
$$\coth(x) = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

5. 
$$\operatorname{sech}(x) = \frac{2}{e^x + e^{-x}}$$

$$6.\operatorname{csch}(x) = \frac{2}{e^{x} - e^{-x}}$$

#### **Remarks:**

\* 
$$tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

\* 
$$coth(x) = \frac{1}{tanh(x)} = \frac{cosh(x)}{sinh(x)}$$

\* 
$$\operatorname{sech}(x) = \frac{1}{\cosh(x)}$$

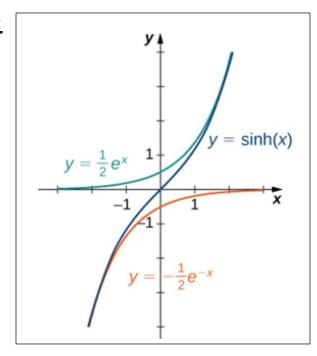
\* 
$$\operatorname{csch}(x) = \frac{1}{\sinh(x)}$$

#### **The Graph of Hyperbolic Functions:**

1. 
$$y = \sinh(x)$$

Domain :  $= \mathbb{R}$ 

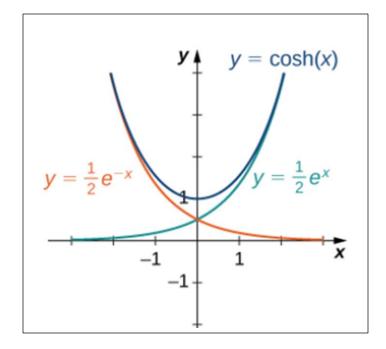
Range  $\coloneqq \mathbb{R}$ 



2.  $y = \cosh(x)$ 

Domain:  $=\mathbb{R}$ 

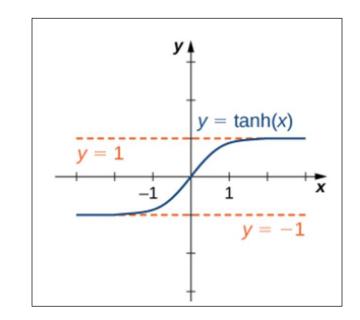
Range  $:= [1, \infty)$ 



3.  $y = \tanh(x)$ 

Domain:  $=\mathbb{R}$ 

Range := (-1,1)



# **Some Facts about Hyperbolic Functions:**

- 1.  $\cosh^2(x) \sinh^2(x) = 1$
- 2.  $1 \tanh^2(x) = \operatorname{sech}^2(x)$
- 3.  $\coth^2(x) 1 = \operatorname{csch}^2(x)$

4. 
$$cosh(-x) = cosh(x)$$
 "Even Function",  
 $sinh(-x) = -sinh(x)$  "Odd Function",  
 $tanh(-x) = -tanh(x)$  "Odd Function"

5. 
$$cosh(x) + sinh(x) = e^x$$
,  
 $cosh(x) - sinh(x) = e^{-x}$ 

6. 
$$cosh(x + y) = cosh(x)cosh(y) + sinh(x)sinh(y),$$
  
 $sinh(x + y) = sinh(x)cosh(y) + cosh(x)sinh(y),$   
 $tanh(x + y) = \frac{tanh(x) + tanh(y)}{1 - tanh(x)tanh(y)}$ 

7. 
$$\cosh^2(x) = \frac{1}{2}(\cosh(2x) + 1),$$

$$\sinh^2(x) = \frac{1}{2}(\cosh(2x) - 1)$$

8. 
$$cosh(2x) = cosh^2(x) + sinh^2(x)$$
,  
 $sinh(2x) = 2sinh(x)cosh(x)$ 

#### The Derivative of Hyperbolic Functions:

Let u be a function of x, then:

$$1 \frac{d}{dx}(\sinh(u)) = \cosh(u) \cdot \frac{du}{dx}$$

$$2 \frac{d}{dx}(\cosh(u)) = \sinh(u) \cdot \frac{du}{dx}$$

$$3 \frac{d}{dx}(\tanh(u)) = \operatorname{sech}^{2}(u) \cdot \frac{du}{dx}$$

$$4 \frac{d}{dx}(\coth(u)) = -\operatorname{csch}^{2}(u) \cdot \frac{du}{dx}$$

$$5 \frac{d}{dx}(\operatorname{sech}(u)) = -\operatorname{sech}(u) \cdot \tanh(u) \cdot \frac{du}{dx}$$

$$6 \frac{d}{dx}(\operatorname{csch}(u)) = -\operatorname{csch}(u) \cdot \operatorname{coth}(u) \cdot \frac{du}{dx}$$

**Examples:** Find the derivatives of the following functions:

• 
$$\sinh(3x)$$
  
 $\Rightarrow y' = 3\cosh(3x)$ 

• 
$$y = \cosh^2(5x)$$
  
 $\Rightarrow y' = 2\cosh(5x) \cdot \sinh(5x).5$ 

• 
$$tanh(2x)$$
  
 $\Rightarrow y' = sech^2(2x) \cdot 2$ 

• 
$$y = \coth(\tan(x))$$
  
 $\Rightarrow y' = -\operatorname{csch}^2(\tan x) \cdot \sec^2 x$ 

• 
$$y = \operatorname{sech}^3 x$$
  
 $\Rightarrow y' = 3\operatorname{sech}^2(x) \cdot (-\operatorname{sech}(x) \tanh(x) \cdot 1)$ 

• 
$$y = 4\operatorname{csch}\left(\frac{x}{4}\right)$$
  
 $\Rightarrow y' = 4 \cdot \left(-\operatorname{csch}\left(\frac{x}{4}\right)\right) \cdot \operatorname{coth}\left(\frac{x}{4}\right) \cdot \frac{1}{4}$ 

**Problems (5.8):** Find y' of the following:

$$1 \ y = \frac{\cosh(x)}{x}$$

$$2 y = \sinh^2(3w)$$

$$y = e^w \cdot \cosh(w)$$

$$4 \sin^{-1}(x) = \operatorname{sech}(y)$$

$$5 \quad y = \tanh\left(\frac{4t+1}{5}\right)$$

$$6 \quad \tan(x) = \tanh^2(y)$$

$$7 x = cosh(cos(y))$$

8. 
$$sinh(y) = sec(x)$$

8. 
$$y = \coth\left(\frac{1}{\theta}\right)$$

9. 
$$y^2 + x \cosh y + \sinh^2 x = 50$$

10. 
$$y = \cosh^2(5x) - \sinh^2(5x)$$

11. 
$$y = \operatorname{csch}^3(\sqrt{2x})$$

12. 
$$sinh(y) = tanh(x)$$