Membrane Transport and the Membrane Potential

Dr. Ban Hassan Adil

Extracellular Environment

- -Includes all parts of the body outside of cells
- -Cells receive nourishment
- -Cells release waste
- -Cells interact(through chemical mediators)

Body Fluids

- -Two compartments
 - 1- Intracellular (~ 67% of body's H₂O)
 - 2- Extracellular (~33% of body's H₂O)
 - -Blood plasma:about 20% of this
 - -Tissue fluid (or interstitial fluid)
 - -includes extracellular matrix
 - Lymph

- -Plasma (cell) membrane
 - -In selectively permeable
 - -Generally not permeable to
 - -Proteins
 - -Nucleic acids
 - -Selectively permeable to
 - -Ions
 - -Nutrients
 - -Waste
 - -It is a biological interface between the two compartments

- -Plasma (cell) membrane
 - -Site of chemical reactions
 - -Enzymes located in it
 - -Receptors can bond to molecular signals
 - -Transporter molecules

- -Transport categories
 - **Based on structure**
 - -Carrier-mediated
 - -Facilitated diffusion
 - -Active transport
 - -Non -carrier mediated
 - -Diffusion
 - -Osmosis
 - -Bulk flow(pressure gradients)
 - -Vesicle mediated
 - -Exocytosis
 - -Endocytosis
 - -Pinocytosis
 - -Phagocytosis

- -Based on energy requirements
 - -Passive transport
 - -Based on concentration gradient
 - -Does not use metabolic energy
 - -Active transport
 - -Against a gradient
 - -Uses metabolic energy
 - -Involves specific carriers

summary

Diffusion and Osmosis

- -Cell membrane separates ICF from ECF
- -Cell membrane is selectively permeable
- -Mechanisms to transport molecules and ions through the cell membrane
 - -Carrier mediated transport
 - -Non -carrier mediated transport

Diffusion and Osmosis

- -Energy requirements for transport through the cell membrane:
 - -Passive transport:
 - -Net movement down a concentration gradient
 - -Active transport:
 - -Net movement against a concentration gradiant
 - -Requires energy

Diffusion

-Physical process that accurs:

- -Concentration difference across the membrane
- -Membrane is permeable to the diffusing substance
- -Molecules / ions are in constant state of random motion due to their thermal energy
- -Eliminates a concentration gradient and distributes the molecules uniformly

Diffusion Through Cell Membrane

-Cell membrane permeable to:

- -Non –polar molecules (O_2)
- -Lipid soluble molecules (steroids)
- -Small polar covalent bonds (CO₂)
- -H₂O(small size,lack charge)

-Cell membrane impermeable to:

- -Large polar molecules (glucose)
- -Charged inorganic ions(Na⁺)

Rate of Diffusion

-Dependent upon:

- -The magnitude of concentration gradient
 - -Driving force of diffusion
- -Permeability of the membrane
 - -Neuronal cell membrane 20 x more permeable to K⁺ than Na⁺

-Temperature

-Higher temperature, faster diffusion rate

-Surface area of the membrane

-Microvilli increase surface area

Facilitated Diffusion

- -Facilitated diffusion:
- -Passive:
- -ATP not needed. Powered by thermal energy
- -Involves transport of substance through cell membrane from higher to lower concentration

Osmosis

- -Net diffusion of H₂O across a selectively permeable membrane
- -2 requirement of osmosis:
- -Must be difference in solute concentration on the 2 sides of the membrane
- -Membrane must be impermeable to the solute
- -Osmotically active solutes: solutes that cannot pass freely through the membrane

Effects of Osmosis

Movement of H₂O from high concentration of H₂O to lower concentration of H₂O

Active Transport

- -Movement of molecules and ions against their concentration gradients
 - -From lower to higher concentrations
- -Requires ATP
- -2 types of Active Transport:
 - -Primary
 - -Secondary

Membrane Transport of Glucose

- -Glucose transport is an example of:
 - -Cotransport
 - -Primary active transport
 - -Facilitated diffusion

