
# Computer Architecture

2<sup>nd</sup> Class, Computer Science Dept.

By Dr. Ahmed Al-Taie,





### Chapter 1 Introduction to Computer Systems **Outline**

- Historical Background
- Architectural Development and Styles
- Technological Development
- Performance Measures



### **Introduction to Computer Systems**

# The technological advances

witnessed in the computer industry are the result of a long chain of immense and successful efforts made by two major forces.

These are the *academia*, represented by university research centers, and the *industry*, represented by computer companies.

#### The objective

of such historical review is to understand the factors affecting computing as we know it today and hopefully to forecast the future of computation.

A great majority of the computers of our daily use are known as *general purpose machines*.

#### These are

machines that are built with no specific application in mind, but rather are capable of performing computation needed by a diversity of applications.

These machines are to be **distinguished** from those built to serve specific applications.

The latter are known as **special purpose machines.** 

10/20/2024

### **Introduction to Computer Systems**

#### Computer systems

have conventionally been defined through their interfaces at a number of **layered abstraction levels**, each providing **functional support** to its predecessor.

#### Included

among the levels are the application programs, the high-level languages, and the set of machine instructions.

Based on the interface between

different levels of the system, a number of computer architectures can be defined.

#### The interface between

the **application programs** and a **high-level language** is

referred to as a *language architecture*.

The *instruction set architecture* defines the interface between the basic machine instruction set and the runtime and I/O control.

10/20/2024

### **Introduction to Computer Systems**

A different definition of

*computer architecture* is built on four basic viewpoints.

These are *the structure*, *the organization*, *the implementation*, and *the performance*.

In this definition,

the *structure* defines the interconnection of various hardware components,

the *organization* defines the dynamic interplay and management of the various components,

#### the *implementation*

defines the detailed design of hardware components, and the **performance specifies** the behavior of the computer system.

10/20/2024

#### We should emphasize at

- the outset that the effort to build computers has not originated at one single place.
- We also firmly believe that building a computer requires teamwork.

#### **Historical Background**

- It is probably fair to say that the first programcontrolled (mechanical) computer ever build was the Z1 (1938).
- This was followed in 1939
  by the Z2 as the first
  operational program controlled computer with
  fixed-point arithmetic.

#### However,

- the first recorded universitybased attempt to build a computer originated on lowa State University campus in the early 1940s.
- Researchers on that campus were able to build a smallscale special-purpose electronic computer. However, that computer was never completely operational.

#### Just about the same time

- a complete design of a fully functional programmable special-purpose machine, the Z3, was reported in Germany in 1941.
- It appears that the lack of funding prevented such design from being implemented.

10/20/2024

#### **General-purpose machines**

- the University of Pennsylvania is recorded to have hosted the building of the Electronic Numerical Integrator and Calculator (ENIAC) machine in 1944.
- It was the first operational general-purpose machine built using vacuum tubes.
- The machine was primarily built to help compute artillery firing tables during World War II.

**Computer Architecture by Ahmed Al-Taie** 

#### The improved version

- of the ENIAC, called the Electronic Discrete Variable Automatic Computer (EDVAC), was an attempt to improve the way programs are entered and explore the concept of stored programs.
- Inspired by the ENIAC's ideas, researchers at the Institute for Advanced Study (IAS) at Princeton built (in 1946) the IAS machine, which was about 10 times faster than the ENIAC.

7

#### In 1946 and while the EDVAC

- project was in progress, a similar project was initiated at Cambridge University.
- The project was to build a stored-program computer, known as the Electronic Delay Storage Automatic Calculator (EDSAC).
- It was in 1949 that the EDSAC became the world's first fullscale, stored-program, fully operational computer.

A spin-off of the EDSAC

- resulted in a series of machines introduced at Harvard. The series consisted of MARK I, II, III, and IV.
- The latter two machines introduced the concept of separate memories for instructions and data.
- The term Harvard Architecture was given to such machines to indicate the use of separate memories and it is used today to describe machines with separate cache memories.

**Computer Architecture by Ahmed Al-Taie** 

#### The first general-purpose

- commercial computer, the UNIVersal Automatic Computer (UNIVAC I), was on the market by the middle of 1951.
- It represented an improvement over the BINAC, which was built in 1949.
- **IBM** announced its first computer, the **IBM701**, in **1952**.
- The early **1950s** witnessed a slowdown in the computer industry.
- In **1964 IBM** announced a line of products under the name **IBM 360 series**.

10/20/2024

#### This led Digital Equipment Corporation (DEC)

- to introduce the first minicomputer, the PDP-8. It was considered a remarkably low-cost machine.
- Intel introduced the first microprocessor, the Intel 4004, in 1971.
- The world witnessed the birth of the first personal computer (PC) in 1977 when Apple computer series were first introduced.

# In 1977 the world also witnessed

- the introduction of the VAX 11/780 by DEC.
- Intel followed suit by introducing the first of the most popular microprocessor, the 80 86 series.
  - Personal computers, which . were introduced in **1977** by **Altair, Processor Technology, North Star, Tandy, Commodore, Apple**, and many others, **enhanced the productivity** of end-users in numerous departments.

**Computer Architecture by Ahmed Al-Taie** 

#### Personal computers from

- Compaq, Apple, IBM, Dell, and many others, soon became pervasive, and changed the face of computing.
- In parallel with small-scale machines, supercomputers were coming into play.
- The first such supercomputer, the CDC 6600, was introduced in 1961 by Control Data Corporation.
- CrayResearchCorporationintroducedthebestcost/performancesupercomputer,theCray-1, in1976.

9

10/20/2024

### The 1980s and 1990s witnessed the introduction

- of many commercial parallel computers with multiple processors.
- They can generally be classified into two main categories: (1) shared memory and (2) distributed memory systems.
- The number of processors in a single machine ranged from several in a shared memory computer to hundreds of thousands in a massively parallel system.

10/20/2024

# Examples of parallel computers during

- this era include Sequent Symmetry, Intel iPSC, nCUBE, Intel Paragon, Thinking Machines (CM-2, CM-5), MsPar MP), Fujitsu (VPP500), and others.
- One of the clear trends in computing is the substitution of centralized servers by networks of computers.
- These networks connect inexpensive, powerful desktop machines to form unequaled computing power.

#### Local area networks (LAN)

- of powerful personal computers and workstations began to replace mainframes and minis by 1990.
- These individual desktop computers were soon to be connected into larger complexes of computing by wide area networks (WAN).

### **Summary of Historical Background**

- The pervasiveness of the Internet created interest in network computing and more recently in grid computing. Grids are geographically distributed platforms of computation.
- They should provide dependable, consistent, and inexpensive access to high-end computational facilities.
- In Table 1.1, major characteristics of the different computing paradigms are associated with each decade of computing, starting from 1960.

#### **TABLE 1.1 Four Decades of Computing**

| Feature      | Batch                      | Time-sharing            | Desktop                          | Network     |
|--------------|----------------------------|-------------------------|----------------------------------|-------------|
| Decade       | 1960s                      | 1970s                   | 1980s                            | 1990s       |
| Location     | Computer room              | Terminal room           | Desktop                          | Mobile      |
| Users        | Experts                    | Specialists             | Individuals                      | Groups      |
| Data         | Alphanumeric               | Text, numbers           | Fonts, graphs                    | Multimedia  |
| Objective    | Calculate                  | Access                  | Present                          | Communicate |
| Interface    | Punched card               | Keyboard & CRT          | See & point                      | Ask & tell  |
| Operation    | Process                    | Edit                    | Layout                           | Orchestrate |
| Connectivity | None                       | Peripheral cable        | LAN                              | Internet    |
| Owners       | Corporate computer centers | Divisional IS shops     | Departmental<br>end U <u>ser</u> | Everyone    |
| /20/2024     |                            | Computer Architecture b | y Ahmed Al-Taie                  |             |

# ARCHITECTURAL DEVELOPMENT AND STYLES

- Increasing the performance of the architectures, has taken a number of forms.
- Among these is the philosophy that by doing more in a single instruction, one can use a smaller number of instructions to perform the same job.
- The immediate consequence of this is the need for fewer memory read/write operations and an eventual **speedup** of operations.
- It was also argued that increasing the complexity of instructions and the number of addressing modes has the theoretical advantage of reducing the "semantic gap" between the instructions in a high-level language and those in the low-level (machine) language.
- A single (machine) instruction to convert several binary coded decimal (BCD) numbers to binary is an example for how complex some instructions were intended to be.



# ARCHITECTURAL DEVELOPMENT AND STYLES

- The huge number of addressing modes considered (more than 20 in the VAX machine) further adds to the complexity of instructions.
- Machines following this philosophy have been referred to as complex instructions set computers (CISCs).
- Examples of CISC machines include the Intel Pentium<sup>™</sup>, the Motorola MC68000<sup>™</sup>, and the IBM & Macintosh PowerPC<sup>™</sup>.
- It should be noted that as more capabilities were added to their processors, manufacturers realized that it was increasingly difficult to support higher clock rates that would have been possible otherwise.
- This is because of the increased complexity of computations within a single clock period.

14

# ARCHITECTURAL DEVELOPMENT AND STYLES

- A number of studies (from the mid-1970s and early-1980s) also identified that in typical programs more than 80% of the instructions executed are those using assignment statements, conditional branching and procedure calls.
- It was also surprising to find out that simple assignment statements constitute almost 50% of those operations. These findings caused a different philosophy to emerge.
- This philosophy promotes the optimization of architectures by speeding up those operations that are most frequently used while reducing the instruction complexities and the number of addressing modes.
- Machines following this philosophy have been referred to as reduced instructions set computers (RISCs).
- Examples of RISCs include the Sun SPARC<sup>™</sup> and MIPS<sup>™</sup> machines.

# **TECHNOLOGICAL DEVELOPMENT**

- Computer technology has shown an unprecedented rate of improvement.
- This **includes** the **development** of **processors** and **memories**.
- The integration of numbers of transistors (a transistor is a controlled on/off switch) into a single chip has increased from a few hundred to millions.
- This impressive increase has been made possible by the advances in the fabrication technology of transistors.

### **TECHNOLOGICAL DEVELOPMENT**

- The scale of integration has grown from small-scale (SSI) to medium-scale (MSI) to large-scale (LSI) to very large-scale integration (VLSI), and currently to wafer scale integration (WSI).
- Table 1.2 shows the typical numbers of devices per chip in each of these technologies.

| Integration | Technology    | Typical number of devices | Typical functions     |
|-------------|---------------|---------------------------|-----------------------|
| SSI         | Bipolar       | 10-20                     | Gates and flip-flops  |
| MSI         | Bipolar & MOS | 50-100                    | Adders & counters     |
| LSI         | Bipolar & MOS | 100-10,000                | ROM & RAM             |
| VLSI        | CMOS (mostly) | 10,000-5,000,000          | Processors            |
| WSI         | CMOS          | >5,000,000                | DSP & special purpose |

| TABLE 1.2 | Numbers of Devices per Chip | D |
|-----------|-----------------------------|---|
|-----------|-----------------------------|---|

SSI, small-scale integration; MSI, medium-scale integration; LSI, large-scale integration; VLSI, very large-scale integration; WSI, wafer-scale integration.

**Computer Architecture by Ahmed Al-Taie** 

10/20/2024

# **TECHNOLOGICAL DEVELOPMENT**

- The continuous decrease in the minimum devices feature size has led to a continuous increase in the number of devices per chip, which in turn has led to a number of developments.
- Among these is the increase in the number of devices in RAM memories, which in turn helps designers to trade off memory size for speed.
- The improvement in the feature size provides golden opportunities for introducing improved design styles.