
Computer
Architecture
2nd Class, Computer Science Dept.

By Dr. Ahmed Al-Taie,

Chapter 3
Assembly Language Programming

Outline
• A Simple Machine
• Instructions Mnemonics and Syntax
• Assembler Directives and Commands
• Assembly and Execution of Programs
• Example: The X86 Family

10/20/2024 Computer Architecture by Ahmed Al-Taie 2

ASSEMBLY AND EXECUTION OF PROGRAMS

10/20/2024 Computer Architecture by Ahmed Al-Taie 21

• The linker will check the object file for calls to
procedures in the link library.

• The linker will combine the required procedures from
the link library with the object program and produce
the executable program.

• The loader loads the executable program into
memory and branches the CPU to the starting
address. The program begins execution.• Figure 3.3 shows three steps in the

assembly and execution process.
• The assembler reads the source program

in assembly language and generates the
object program in binary form.

• The object program is passed to the
linker.

• As you know by now, a program written in
assembly language needs to be translated
into binary machine language before it can
be executed.

• In this section, we will learn how to get from
the point of writing an assembly program to
the execution phase.

ASSEMBLY AND EXECUTION OF PROGRAMS

10/20/2024 Computer Architecture by Ahmed Al-Taie 22

• The functions of the assembler can be performed

by scanning the assembly program and mapping

its instructions to their machine code equivalent.

• Since symbols can be used in instructions before

they are defined in later ones, a single scanning of

the program might not be enough to perform the

mapping.

• A simple assembler scans the entire assembly

program twice, where each scan is called a pass.

During the first pass, it generates a table that

includes all symbols and their binary values.

• This table is called the symbol table.

• During the second pass, the assembler will use the

symbol table and other tables to generate the

object program, and output some information that

will be needed by the linker.

• Assemblers:
• Assemblers are programs that generate

machine code instructions from a source

code program written in assembly

language.

• The assembler will replace symbolic

addresses by numeric addresses, replace

symbolic operation codes by machine
operation codes, reserve storage for

instructions and data, and translate

constants into machine representation.

ASSEMBLY AND EXECUTION OF PROGRAMS

10/20/2024 Computer Architecture by Ahmed Al-Taie 23

• Data Structures: The assembler

uses at least three tables to

perform its functions: symbol

table, opcode table, and pseudo

instruction table.

• The symbol table, which is

generated in pass one, has an

entry for every symbol in the

program.

• Associated with each symbol are

its binary value and other

information.

ASSEMBLY AND EXECUTION OF PROGRAMS

10/20/2024 Computer Architecture by Ahmed Al-Taie 24

• We assume that the instruction LD X

is starting at location 0 in the

memory.

• Since each instruction takes two

bytes, the value of the symbol LOOP

is 4 (004 in hexadecimal).

• Symbol N, for example, will be stored

at decimal location 40 (028 in

hexadecimal).

• The values of the other symbols can

be obtained in a similar way.

• The opcode table provides

information about the operation

codes.

• Associated with each symbolic opcode in the table

are its Numerical value and other information

about its type, its instruction length, and its

operands.

• Table 3.6 shows the opcode Table for the simple

processor described in Section 3.1.

ASSEMBLY AND EXECUTION OF PROGRAMS

10/20/2024 Computer Architecture by Ahmed Al-Taie 25

• As an example, we explain the information

associated with the opcode LD.

• It has one operand, which is a memory address

and its binary value is 0001.

• The instruction length of LD is 2 bytes and its

type is memory-reference.

• The entries of the pseudo instruction table are

the pseudo instructions symbols.

• Each entry refers the assembler to a procedure

that processes the pseudo instruction when

encountered in the program.

• For example, if END is encountered, the

translation process is terminated.

ASSEMBLY AND EXECUTION OF PROGRAMS

10/20/2024 Computer Architecture by Ahmed Al-Taie 26

• In order to keep track of the instruction locations,

the assembler maintains a variable called

instruction location counter (ILC).

• The ILC contains the value of memory location

assigned to the instruction or operand being

processed.

• The ILC is initialized to 0 and is incremented after

processing each instruction.

• The ILC is incremented by the length of the

instruction being processed, or the number of

bytes allocated as a result of a data allocation

pseudo instruction.

• Figures 3.4 and 3.5 show simplified flowcharts of

pass one and pass two in a two-pass assembler.

• Remember that the main function of pass

one is to build the symbol table while pass

two’s main function is to generate the

object code.

Linker and Loader

10/20/2024 Computer Architecture by Ahmed Al-Taie 27

• The linker is the entity that can combine object modules that may have resulted from

assembling multiple assembly modules separately.

• The loader is the operating system utility that reads (loads) the executable into memory

and start execution.

• In summary, after assembly modules are translated into object modules, the functions of

the linker and loader prepare the program for execution.

• These functions include combining object modules together, resolving addresses

unknown at assembly time, allocating storage, and finally executing the program.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 28

• In this section, we discuss the assembly language features and use of the X86 family.

• We present the basic organizational features of the system, the basic programming

model, the addressing modes, sample of the different instruction types used, and finally

examples showing how to use the assembly language of the system in programming

sample real-life problems.

• In the late 1970s, Intel introduced the 8086 as its first 16-bit microprocessor.

• This processor has a 16-bit external bus.

• The 8086 evolved into a series of faster and more powerful processors starting with the

80286 and ending with the Pentium.

• The latter was introduced in 1993.

• This Intel family of processors is usually called the X86 family.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 29

• Table 3.7 summarizes the main features of the main members of such a family.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 30

• The Intel Pentium processor has about

three million transistors and its

computational power ranges between two

and five times that of its predecessor

processor, the 80486.

• A number of new features were introduced

in the Pentium processor, among which is

the incorporation of a dual-pipelined

superscalar architecture capable of

processing more than one instruction per

clock cycle.

• The basic programming model of the 386,

486, and the Pentium is shown in Figure 3.6.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 31

• It consists of three register groups.

• These are the general purpose registers, the segment registers, and the instruction

pointer (program counter) and the flag register.

• The first set consists of general purpose registers A, B, C, D, SI (source index), DI

(destination index), SP (stack pointer), and BP (base pointer).

• It should be noted that in naming these registers, we used X to indicate eXtended.

• The second set of registers consists of CS (code segment), SS (stack segment), and four

data segment registers DS, ES, FS, and GS.

• The third set of registers consists of the instruction pointer (program counter) and the

flags (status) register. The latter is shown in Figure 3.7.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 32

• Among the status bits shown in Figure 3.7, the first five are identical to those bits introduced

as early as in the 8085 8-bit microprocessor. The next 6– 11 bits are identical to those

introduced in the 8086.

• The flags in the bits 12– 14 were introduced in the 80286 while the 16 –17 bits were

introduced in the 80386. The flag in bit 18 was introduced in the 80486. Table 3.8 shows the

meaning of those flags.

• In the X86 family an instruction can perform an operation on one or two operands.

• In two-operand instructions, the second operand can be immediate data in 2’s complement

format. Data transfer, arithmetic and logical instructions can act on immediate data,

registers, or memory locations.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 33

• In the X86 family, direct and indirect memory addressing can be used.

• In direct addressing, a displacement address consisting of a 8-, 16-, or 32-bit word is

used as the logical address.

• This logical address is added to the shifted contents of the segment register (segment

base address) to give a physical memory address.

• Figure 3.8 illustrates the direct addressing process.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 34

• Address indirection in the X86 family can be

obtained using the content of a base pointer

register (BPR), the content of an index register,

or the sum of a base register and an index

register.

• Figure 3.9 illustrates indirect addressing using

the BPR. The X86 family of processors defines a

number of instruction types.

• Using the naming convention introduced before,

these instruction types are data movement,

arithmetic and logic, and sequencing (control

transfer).

• In addition, the X86 family defines other

instruction types such as string manipulation,

bit manipulation, and high-level language

support.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 35

• Data movement instructions in the X86 family include mainly four subtypes.

• These are the general-purpose, accumulator-specific, address-object, and flag

instructions. A sample of these instructions is shown in Table 3.9.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 36

• Arithmetic and logic instructions in the X86 family include mainly five subtypes.

• These are addition, subtraction, multiplication, division, and logic instructions.

• A sample of the arithmetic instructions is shown in Table 3.10.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 37

• Logic instructions include the typical AND, OR, NOT, XOR, and TEST.

• The latter performs a logic compare of the source and the destination and sets the flags

accordingly.

• In addition, the X86 family has a set of shift and rotate instructions.

• A sample of these is shown in Table 3.11.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 38

• Control transfer instructions in the X86 family include mainly four subtypes.

• These are conditional, iteration, interrupt, and unconditional.

• A sample of these instructions is shown in Table 3.12.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 39

• Processor control instructions in the X86 family include mainly three subtypes.

• These are external synchronization, flag manipulation, and general control instructions.

• A sample of these instructions is shown in Table 3.13.

• Having introduced the basic features of the instruction set of the X86 processor family,

we now move on to present a number of programming examples to show how the

instruction set can be used.

• The examples presented are the same as those presented at the end of Chapter 2.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 40

• Example 3: Adding 100 numbers stored at consecutive memory locations starting at

location 1000, the results should be stored in memory location 2000.

• LIST is defined as an array of N elements each of size byte.

• FLAG is a memory variable used to indicate whether the list has been sorted or not.

• The register CX is used as a counter with the Loop instruction.

• The Loop instruction decrements the CX register and branch if the result is not zero.

• The addressing mode used to access the array List [BX + 1] is called based addressing

mode.

• It should be noted that since we are using BX and BX + 1 the CX counter is loaded with the

value 999 in order not to exceed the list.

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 41

MOV CX, 1000 - 1 ; Counter = CX (1000 - 1)

MOV BX, Offset LIST ; BX pointer to LIST

CALL SORT……

SORT PROC NEAR

Again: MOV FLAG, 0 ; FLAG 0

Next: MOV AL, [BX]

CMP AL, [BX + 1] ;Compare current and next values

JLE Skip ;Branch if current , next values

XCHG AL, [BX + 1] ;If not, Swap the contents of the

MOV [BX + 1], AL ;current location with the next one

MOV FLAG, 1 ;Indicate the swap

Skip: INC BX ; BX = BX + 1

LOOP Next ;Go to next value

CMP FLAG, 1 ;Was there any swap

JE Again ;If yes Repeat process

RET

SORT ENDP

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 42

• Example 4: Here we implement the SEARCH algorithm in the 8086 instruction set.

• LIST is defined as an array of N elements each of size word.

• FLAG is a memory variable used to indicate whether the list has been sorted or not.

• The register CX is used as a counter with the loop instruction.

• The Loop instruction decrements the CX register and branch if the result is not zero.

• The addressing mode used to access the array List [BX + 1] is called based addressing

mode

MOV CX, 1000 ; Counter = CX + 1000

MOV BX, Offset LIST ; BX pointer to LIST

MOV SI, 0 ; SI used as an index

MOV AX, VAL ; AX <- VAL

CALL SEARCH

……. ; Test FLAG to check whether value found

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 43

SEARCH PROC NEAR

MOV FLAG, 0 ; FLAG <-0
Next: CMP AX, [BX+SI] ;Compare current value to VAL

JE Found ;Branch if equal
ADD SI, 2 ; SI SI+2, next value
LOOP Next ;Go to next value
JMP Not_Found

Found: MOV FLAG, 1 ;Indicate value found
MOV POSITION, SI ;Return index of value in List

Not_Found: RET

SEARCH ENDP

EXAMPLE: THE X86 FAMILY

10/20/2024 Computer Architecture by Ahmed Al-Taie 44

Example 5: This is the same as Example 4 but
using the stack features of the X86.

PUSH DS ;See Table 3.9
MOV CX, 1000 ;Counter = CX =1000
MOV BX, OFFSET LIST ;Point to beginning of
LIST
PUSH BX
PUSH VAL ;VAL is a word variable
CALL SEARCH ;Test FLAG to check whether
value found ;If found get index from SI register
using POP SI
.....

SEARCH PROC NEAR
POP TEMP ;Save IP
POP AX ;AX VAL. Value to search for
POP SI ;SI OFFSET LIST and let BX =SI
POP ES ;Make ES = DS (See Table)
CLD ;Set auto-increment mode
REPNE SCASW ;Scan LIST for value in AX if not found;

increment SI by 2, decrement CX and if; not zero scan
next location in LIST. ;If occurrence found Zero flag
is set

JNZ Not_Found ;If value not branch to Not_Found?
MOV FLAG, 1 ;Yes
SUB SI, BX
PUSH SI ;Save position
Not_Found: PUSH TEMP ;Restore IP
RET
SEARCH ENDP

Thank you

