Computer
Architecture

2"d Class, Computer Science Dept.

By Dr. Ahmed Al-Taie,

COMPUTER
, SYSTEM
, \lu HITECTURE
.

THIRD EDITION

FUNDAMENTALS or COMPUTER
ORGANIZATION wo ARCHITECTURE

ROIINA VA RN 2 PO T
MOSTAFA ABD-EL-BARR == = ¢
HESHAM EL-REWINI -1 ‘

10/20/2024

Chapter 3
Assembly Language Programming

Outline

A Simple Machine
Instructions Mnemonics and Syntax

Computer
Assembler Directives and Commands Architecture ___
Assembly and Execution of Programs By Dr. Ahmed Al-Taie, |

Example: The X86 Family r.

Computer Architecture by Ahmed Al-Taie

ASSEMBLY AND EXECUTION OF PROGRA

* As you know by now, a program written in ¢ The linker will check the object file for calls
assembly language needs to be translated procedures in the link library.
into binary machine language before it can ¢ The linker will combine the required procedures from
be executed. the link library with the object program and produce
* In this section, we will learn how to get from the executable program.
the point of writing an assembly program to * The loader loads the executable program into
the execution phase. memory and branches the CPU to the starting

. Figure 3.3 shows three steps in the address. The program begins execution.

assembly and execution process.

* The assembler reads the source program Py
in assembly language and generates the
object program in binary form. L,

* The ObjeCt program is passed to the —P Assembler [————P Linker . Loader
linker.

Assembly program Object program Executable program

Figure 3.3 Assembly and execution process

10/20/2024 Computer Architecture by Ahmed Al-Taie

ASSEMBLY AND EXECUTION OF PROGRA

e Assemblers:

* Assemblers are programs that generate
machine code instructions from a source
code program written in assembly
language.

The assembler will replace symbolic
addresses by numeric addresses, replace
symbolic operation codes by machine
operation codes, reserve storage for
instructions and data, and translate
constants into machine representation.

10/20/2024

Computer Architecture by Ahmed Al-Taie

The functions of the assembler can be performe
by scanning the assembly program and mapping
its instructions to their machine code equivalent.
Since symbols can be used in instructions before
they are defined in later ones, a single scanning of
the program might not be enough to perform the
mapping.

A simple assembler scans the entire assembly
program twice, where each scan is called a pass.
During the first pass, it generates a table that
includes all symbols and their binary values.

This table is called the symbol table.

During the second pass, the assembler will use the
symbol table and other tables to generate the
object program, and output some information that
will be needed by the linker.

ASSEMBLY AND EXECUTION OF PROGRA

e Data Structures: The assembler TABLE 3.5 Symbol Table for the Multiplication

uses at least three tables to Scgment (Example2)

perform its functions: symbol Value Other
Symbol (hexadecimal) information
table, opcode table, and pseudo

instruction table. E"X‘;Pr g?;
* The symbf)I table, which is 020
generated in pass one, has an Yy 022
entry for every symbol in the Z 024
roaram ONE 026
program. N 028

* Associated with each symbol are
its binary value and other
information.

10/20/2024 Computer Architecture by Ahmed Al-Taie

ASSEMBLY AND EXECUTION OF PROGRA

* We assume that the instruction LD X * Associated with each symbolic opcode in the tab
is starting at location 0 in the are its Numerical value and other information
about its type, its instruction length, and its
operands.

* Table 3.6 shows the opcode Table for the simple
processor described in Section 3.1.

memory.

* Since each instruction takes two
bytes, the value of the symbol LOOP
is 4 (004 in hexadecimal).

. TABLE 3.6 Th de Table for the A bly of imple P
o Symbol N, for example, will be stored e Opcode Table for the Assembly of our Simple Processor

Opcode value Instruction length

at decimal location 40 (028 In Opcode Operand (binary) (bytes) Instruction type
hexadecimal). STOP — 0000 2 Control
* The values of the other symbols can P Mem-odr 0001 : Memory-reference
. . .. ST Mem-adr 0010 2 Memory-reference
be obtained in a similar way. MOVAC — 0011 2 Register-reference
. MOV — 0100 2 Register-reference
The OpCOde table prOVIdeS ADD — 0101 2 Register-reference
information about the operation SUB — 0110 2 Register-reference
AND — 0111 2 Register-reference
NOT — 1000 2 Register-reference
BRA Mem-adr 1001 2, Control
BZ Mem-adr 1010 2 Control

10/20/2024 Computer Architecture by Ahmed Al-Taie

ASSEMBLY AND EXECUTION OF PROGRA

* As an example, we explain the information
associated with the opcode LD.

* It has one operand, which is a memory address Start
and its binary value is 0001.
* The instruction length of LD is 2 bytes and its [LC 0
type is memory-reference. i-f'
* The entries of the pseudo instruction table are Process next instruction

the pseudo instructions symbols.

* Each entry refers the assembler to a procedure
that processes the pseudo instruction when
encountered in the program.

* For example, if END is encountered, the
translation process is terminated.

Add to Symbol Table

with value = ILC Inerement ILC

A

Figure 3.4 Simplified pass one in a two-pass assembler

10/20/2024 Computer Architecture by Ahmed Al-Taie

ASSEMBLY AND EXECUTION OF PROGRA

* In order to keep track of the instruction locations, * Remember that the main function of pass
the assembler maintains a variable called one is to build the symbol table while pass

instruction location counter (ILC). two’s main function is to generate the
« The ILC contains the value of memory location ©Piect code.

assigned to the instruction or operand being Start

processed.
* The ILC is initialized to 0 and is incremented after P

processing each instruction. o e icitoadtion
e The ILC is incremented by the length of the

instruction being processed, or the number of Yes

bytes allocated as a result of a data allocation @

pseudo instruction. No
* Figures 3.4 and 3.5 show simplified flowcharts of T

pass one and pass two in a two-pass assembler. l

Symbol Table Lookup » Generate machine code

Figure 3.5 Simplified pass two in a two-pass assembler

10/20/2024 Computer Architecture by Ahmed Al-Taie

Linker and Loader

* The linker is the entity that can combine object modules that may have resulted from
assembling multiple assembly modules separately.

* The loader is the operating system utility that reads (loads) the executable into memory
and start execution.

* In summary, after assembly modules are translated into object modules, the functions of
the linker and loader prepare the program for execution.

* These functions include combining object modules together, resolving addresses
unknown at assembly time, allocating storage, and finally executing the program.

Library I

—P Assembler —————P| Linker P Loader

Assembly program Object program Executable program

Figure 3.3 Assembly and execution process

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* In this section, we discuss the assembly language features and use of the X86 family.

* We present the basic organizational features of the system, the basic programming
model, the addressing modes, sample of the different instruction types used, and finally
examples showing how to use the assembly language of the system in programming
sample real-life problems.

* In the late 1970s, Intel introduced the 8086 as its first 16-bit microprocessor.

* This processor has a 16-bit external bus.

* The 8086 evolved into a series of faster and more powerful processors starting with the
80286 and ending with the Pentium.

* The latter was introduced in 1993.

* This Intel family of processors is usually called the X86 family.

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* Table 3.7 summarizes the main features of the main members of such a family.

TABLE 3.7 Main Features of the Intel X86 Microprocessor Family

Feature 8086 286 386 486 Pentium
Date introduced 1978 1982 1985 1991 1993
Data bus 8 bits 16 bits 32 bits 32 bits 64 bits
Address bus 20 bits 24 bits 32 bits 32 bits 32 bits
Operating speed 5,8,10 MHz 6,8,10, 12.5, 16, 20,25, 33, 23, 33, 50, 60, 66,
16, 20 MHz 40, 50 MHz 50 MHz 100 MHz
Instruction cache NA NA 16 bytes 32 bytes 8 Kbytes
size
Data cache size NA NA 256 bytes 8 Kbytes 8 Kbytes
Physical memory 1 Mbytes 16 Mbytes 4 Gbytes 4 Gbytes 4 Gbytes
Data word size 16 bits 16 bits 16 bits 32 bits 32 bits

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* The Intel Pentium processor has about

31 16
three million transistors and its EAX :
computational power ranges between two EBX
and five times that of its predecessor ECX
processor, the 80486. EDX
* A number of new features were introduced ESI
in the Pentium processor, among which is EDI
the incorporation of a dual-pipelined ESP
superscalar architecture capable of — BP
processing more than one instruction per —
clock cycle. s
* The basic programming model of the 386, e
486, and the Pentium is shown in Figure 3.6. Gs
IP
31 16 15 0
E Flags Flags H Flags L

Figure 3.6 The base register sets of the X86 programming model

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* It consists of three register groups.

* These are the general purpose registers, the segment registers, and the instruction
pointer (program counter) and the flag register.

* The first set consists of general purpose registers A, B, C, D, SI (source index), DI
(destination index), SP (stack pointer), and BP (base pointer).

* It should be noted that in naming these registers, we used X to indicate eXtended.

* The second set of registers consists of CS (code segment), SS (stack segment), and four
data segment registers DS, ES, FS, and GS.

* The third set of registers consists of the instruction pointer (program counter) and the
flags (status) register. The latter is shown in Figure 3.7.

31 I8 J7 16 15 14 131211 10 9 RT76543210
| Reserved | AG|VM|RF| 0 [NT|IOPL [O|[D]|I1]T|S|Z]| |A] |P| |C]

Figure 3.7 The X86 flag register

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* Among the status bits shown in Figure 3.7, the first five are identical to those bits introduce
as early as in the 8085 8-bit microprocessor. The next 6— 11 bits are identical to those
introduced in the 8086.

* The flags in the bits 12— 14 were introduced in the 80286 while the 16 -17 bits were
introduced in the 80386. The flag in bit 18 was introduced in the 80486. Table 3.8 shows the
meaning of those flags.

* In the X86 family an instruction can perform an operation on one or two operands.

* In two-operand instructions, the second operand can be immediate data in 2’s complement
format. Data transfer, arithmetic and logical instructions can act on immediate data,

registers, or memory locations.
TABLE 3.8 X86 Status Flags

Flag Meaning Processor Flag Meaning Processor
C Carry All P Parity All
A Auxiliary All s Zero All
S Sign All : % Trap All
| Interrupt All D Direction All
0 Overflow All IOPL I/O privilege level 286
NT Nested task 286 RF Resume 386
VM Virtual mode 386 AC Alignment check 486

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* In the X86 family, direct and indirect memory addressing can be used.

* In direct addressing, a displacement address consisting of a 8-, 16-, or 32-bit word is
used as the logical address.

* This logical address is added to the shifted contents of the segment register (segment
base address) to give a physical memory address.

* Figure 3.8 illustrates the direct addressing process.

Displacement from Shifted 16 bits

an word of instruction /—/R
/—/\ Original 16 bits

/—/\

7/15/31 0 15 0

Op Code Address

Logical Address ————
Segment base

.;@ < Address

Physical Address

Figure 3.8 Direct addressing in the X86 family
10/20/2024 Computer Architecture by Ahmead Al-laie

EXAMPLE: THE X86 FAMILY

* Address indirection in the X86 family can be
obtained using the content of a base pointer
register (BPR), the content of an index register,

Shifted 16 bits

or the sum of a base register and an index
. Displacement from r—/H
regi ster. 2" word of instruction Original 16 bits
* Figure 3.9 illustrates indirect addressing using R "
the BPR. The X86 family of processors defines a 7/15/31 0 15 0
number of instruction types. Op Code Address
* Using the naming convention introduced before, : '

. . egment base
these instruction types are data movement, 5 » 4 Address
arithmetic and logic, and sequencing (control
transfer).

BPR Physical Address

* In addition, the X86 family defines other
instruction types such as string manipulation,
bit manipulation, and high-level language

Logical Address

Figure 3.9 Indirect addressing using BPR in the X86 family

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* Data movement instructions in the X86 family include mainly four subtypes.
* These are the general-purpose, accumulator-specific, address-object, and flag
instructions. A sample of these instructions is shown in Table 3.9.

TABLE 3.9 Sample of the X86 Data Movement Instructions

Mnemonic Operation Subtype
MOV Move source to destination General purpose
POP Pop source from stack General purpose
POPA Pop all General purpose
PUSH Push source onto stack General purpose
PUSHA Push all General purpose
XCHG Exchange source with destination General purpose
IN Input to accumulator Accumulator
our Output from accumulator Accumulator
XIAT Table lookup to translate byte Accumulator
LEA Load effective address in register Address-object
LMSW Load machine status word Address-object
SMSW Store machine status word Address-object
POPF Pop flags off stack Flag

PUSHF Push flags onto stack Flag

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

e Arithmetic and logic instructions in the X86 family include mainly five subtypes.
* These are addition, subtraction, multiplication, division, and logic instructions.
* A sample of the arithmetic instructions is shown in Table 3.10.

TABLE 3.10 Sample of the X86 Arithmetic Instructions

Mnemonic Operation Subtype
ADD Add source to destination Addition
ADC Add source 0 destination with carry Addition
INC Increment operand by 1 Addition
SUB Subtract source from destination Subtraction
SBB Subtract source from destination with borrow Subtraction
DEC Decrement operand by | Subtraction
MUL Unsigned multiply source by destination Multiply
IMUL Signed multiply source by destination Multiply
DIV Unsigned division accumulator by source Division

IDIV Signed division accumulator by source Division

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

Logic instructions include the typical AND, OR, NOT, XOR, and TEST.
* The latter performs a logic compare of the source and the destination and sets the flags
accordingly.
* In addition, the X86 family has a set of shift and rotate instructions.
* A sample of these is shown in Table 3.11.
TABLE 3.11 Sample of the X86 Shift and Rotate

Instructions

Mnemonic Operation

ROR Rotate right

ROL Rotate left

RCL Rotate left through carry
RCR Rotate right through carry
SAR Arithmetic shift right
SAL Arithmetic shift left

SHR Logic shift right

SHL Logic shift left

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* Control transfer instructions in the X86 family include mainly four subtypes.
* These are conditional, iteration, interrupt, and unconditional.
* A sample of these instructions is shown in Table 3.12.

TABLE 3.12 Sample of the X86 Control Transfer Instructions

Mnemonic Operation Subtype

SET Set byte to true or false based on condition Conditional
JS Jump if sign Conditional

LOOP Loop 1if CX does not equal zero Iteration
LOOPE Loop 1if CX does not equal zero & ZF = 1 Iteration
INT Interrupt Interrupt
IRET Interrupt return Interrupt
JMP Jump unconditional Unconditional

RET Return from procedure Unconditional

10/20/2024 Computer Architecture by Ahmed Al-Taie

10/20/2024

EXAMPLE: THE X86 FAMILY

Processor control instructions in the X86 family include mainly three subtypes.
These are external synchronization, flag manipulation, and general control instructions.
A sample of these instructions is shown in Table 3.13.
Having introduced the basic features of the instruction set of the X86 processor family,
we now move on to present a number of programming examples to show how the

instruction set can be used.

The examples presented are the same as those presented at the end of Chapter 2.

TABLE 3.13 Sample of the X86 Processor Control Instructions

Mnemonic

Operation

Subtype

HLT
LOCK
CLC
CLI
STI
INVD

Halt

Lock the bus

Clear carry flag
Clear interrupt flag
Set interrupt flag
Invalidate data cache

External sync
External sync
Flag

Flag

Flag

General control

Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* Example 3: Adding 100 numbers stored at consecutive memory locations starting at
location 1000, the results should be stored in memory location 2000.

* LIST is defined as an array of N elements each of size byte.

* FLAG is a memory variable used to indicate whether the list has been sorted or not.

* The register CX is used as a counter with the Loop instruction.

* The Loop instruction decrements the CX register and branch if the result is not zero.

* The addressing mode used to access the array List [BX + 1] is called based addressing
mode.

* It should be noted that since we are using BX and BX + 1 the CX counter is loaded with the
value 999 in order not to exceed the list.

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

MOV CX, 1000 - 1 ; Counter = CX (1000 - 1)
MOV BX, Offset LIST ; BX pointer to LIST
CALL SORT......

SORT PROC NEAR
Again: MOV FLAG, 0 ; FLAGO
Next: MOV AL, [BX]
CMP AL, [BX + 1] ;Compare current and next values
JLE Skip ;Branch if current , next values
XCHG AL, [BX + 1] ;If not, Swap the contents of the
MOV [BX + 1], AL ;current location with the next one
MOV FLAG, 1 ;Indicate the swap
Skip: INCBX ; BX=BX +1
LOOP Next ;Go to next value
CMP FLAG, 1 ;Was there any swap
JE Again ;If yes Repeat process
RET
SORT ENDP

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

* Example 4: Here we implement the SEARCH algorithm in the 8086 instruction set.

e LIST is defined as an array of N elements each of size word.

* FLAG is a memory variable used to indicate whether the list has been sorted or not.

* The register CX is used as a counter with the loop instruction.

* The Loop instruction decrements the CX register and branch if the result is not zero.

* The addressing mode used to access the array List [BX + 1] is called based addressing
mode

MOV CX, 1000 ; Counter = CX + 1000

MOV BX, Offset LIST ; BX pointer to LIST

MOV SlI, 0 ; Sl used as an index

MOV AX, VAL ; AX <- VAL

CALL SEARCH

....... ; Test FLAG to check whether value found

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

SEARCH PROC NEAR

MOV FLAG, 0 ; FLAG <-0
Next: CMP AX, [BX+SI] ;Compare current value to VAL
JE Found ;Branch if equal
ADD SI, 2 ; SI SI+2, next value
LOOP Next ;Go to next value
JMP Not Found
Found: MOV FLAG, 1 ;Indicate value found
MOV POSITION, SI ;Return index of value in List

Not Found: RET

SEARCH ENDP

10/20/2024 Computer Architecture by Ahmed Al-Taie

EXAMPLE: THE X86 FAMILY

Example 5: This is the same as Example 4 but
using the stack features of the X86.

PUSH DS ;See Table 3.9

MOV CX, 1000 ;Counter = CX =1000

MOV BX, OFFSET LIST ;Point to beginning of
LIST

PUSH BX

PUSH VAL ;VAL is a word variable

CALL SEARCH ;Test FLAG to check whether
value found ;If found get index from SI register
using POP SI

10/20/2024 Computer Architecture by Ahmed Al-Taie

SEARCH PROC NEAR

POP TEMP ;Save IP

POP AX ;AX VAL. Value to search for

POP SI ;SI OFFSET LIST and let BX =SI

POP ES ;Make ES = DS (See Table)

CLD ;Set auto-increment mode

REPNE SCASW ;Scan LIST for value in AX if not found;
increment SI by 2, decrement CX and if; not zero scan
next location in LIST. ;If occurrence found Zero flag
1s set

JNZ Not_Found ;If value not branch to Not Found?

MOV FLAG, 1 ;Yes

SUB SI, BX

PUSH SI ;Save position

Not Found: PUSH TEMP ;Restore IP

RET

SEARCH ENDP

y ‘
Thank you

