
Computer 
Architecture
2nd Class, Computer Science Dept.

By Dr. Ahmed Al-Taie, 



Chapter 3 
Assembly Language Programming

Outline
• A Simple Machine 
• Instructions Mnemonics and Syntax
• Assembler Directives and Commands
• Assembly and Execution of Programs
• Example: The X86 Family

10/20/2024 Computer Architecture by Ahmed Al-Taie 2



Assembly Language Programming
• In Chapter 2 we introduced the basic concepts and principles involved in the design of

an instruction set of a machine.

• This chapter considers the issues related to assembly language programming. Although
high-level languages and compiler technology have witnessed great advances over the
years, assembly language remains necessary in some cases.

• Programming in assembly can result in machine code that is much smaller and much
faster than that generated by a compiler of a high level language.

• Small and fast code could be critical in some embedded and portable applications,
where resources may be very limited.

• In such cases, small portions of the program that may be heavily used can be written in
assembly language.

• Learning assembly languages and writing assembly code can be extremely helpful in
understanding computer organization and architecture.

10/20/2024 Computer Architecture by Ahmed Al-Taie 3



Assembly Language Programming
• A computer program can be represented at different levels of abstraction.

• A program could be written in a machine-independent, high-level language such as
Java or C++.

• A computer can execute programs only when they are represented in machine
language specific to its architecture.

• A machine language program for a given architecture is a collection of machine
instructions represented in binary form.

• Programs written at any level higher than the machine language must be translated to
the binary representation before a computer can execute them.

• An assembly language program is a symbolic representation of the machine language
program.

10/20/2024 Computer Architecture by Ahmed Al-Taie 4



Assembly Language Programming
• Machine language is pure binary code, whereas assembly language is a direct

mapping of the binary code onto a symbolic form that is easier for humans to
understand and manage.

• Converting the symbolic representation into machine language is performed by
a special program called the assembler.

• An assembler is a program that accepts a symbolic language program (source)
and produces its machine language equivalent (target).

• In translating a program into binary code, the assembler will
(1) replace symbolic addresses by numeric addresses,
(2) replace symbolic operation codes by machine operation codes,
(3) reserve storage for instructions and data, and
(4) translate constants into machine representation.

10/20/2024 Computer Architecture by Ahmed Al-Taie 5



Assembly Language Programming
• The purpose of this Lecture is to give you a general overview of assembly language

and its programming.
• We start the chapter with a discussion of a simple hypothetical machine
• The machine has only five registers and its instruction set has only 10 instructions.
• We will use this simple machine to define a rather simple assembly language that

will be easy to understand and will help explain the main issues in assembly
programming.

• We will introduce instruction mnemonics and the syntax and assembler directives
and commands.

• A discussion on the execution of assembly programs is then presented.
• We end the chapter by showing a real-world example of the assembly language for

the X86 Intel CISC family.

10/20/2024 Computer Architecture by Ahmed Al-Taie 6



A SIMPLE MACHINE
Machine language is the native language of a given processor. Since assembly
language is the symbolic form of machine language, each different type of
processor has its own unique assembly language.

• Before we study the assembly language of a given processor, we need first to
understand the details of that processor.

• We need to know the memory size and organization, the processor registers, the
instruction format, and the entire instruction set.

• In this section, we present a very simple hypothetical processor, which will be used in
explaining the different topics in assembly language throughout the chapter.

10/20/2024 Computer Architecture by Ahmed Al-Taie 7



A SIMPLE MACHINE
Our simple machine is an accumulator-based processor, which has five 16-bit registers:
Program Counter (PC), Instruction Register (IR), Address Register (AR), Accumulator (AC),
and Data Register (DR).

10/20/2024 Computer Architecture by Ahmed Al-Taie 8

• The PC contains the address of the next
instruction to be executed.

• The IR contains the operation code
portion of the instruction being
executed.

• The AR contains the address portion (if
any) of the instruction being executed.

• The AC serves as the implicit source and
destination of data.

• The DR is used to hold data.

The memory unit is made up of 4096
words of storage. The word size is 16 bits.
The processor is shown in Figure 3.1.



A SIMPLE MACHINE
• We assume that our simple processor supports three types of instructions: data transfer,

data processing, and program control.

• The data transfer operations are load, and store, and copy, move data between the registers
AC and DR.

• The data processing instructions are add, subtract, and, and not.

• The program control instructions are jump and conditional jump.

• The instruction set of our
processor is summarized in
Table 3.1.

• The instruction size is 16 bits,
4 bits for the operation code
and 12 bits for the address
(when appropriate).

10/20/2024 Computer Architecture by Ahmed Al-Taie 9



A SIMPLE MACHINE : Example 1
• Example 1: Let us write a machine language program that

• adds the contents of memory location 12 (00C-hex), initialized to 350 and

• memory location 14 (00E-hex), initialized to 96, and

• store the result in location 16 (010-hex), initialized to 0. The program is given in binary
instructions in Table 3.2. The first column gives the memory location in binary for each
instruction and operand.

• The second column lists the contents of
the memory locations.

• For example, the contents of location 0
is an instruction with opcode: 0001, and
operand address: 0000 0000 1100.

• Please note that in the case of
operations that do not require operand,
the operand portion of the instruction is
shown as zeros.

10/20/2024 Computer Architecture by Ahmed Al-Taie 10



A SIMPLE MACHINE : Example 1
• The program is expected to be stored in the indicated memory locations starting at location

0 during execution.

• If the program will be stored at different memory locations, the addresses in some of the
instructions need to be updated to reflect the new locations.

• It is clear that programs written in binary code are very difficult to understand and, of
course, to debug.

• Representing the instructions in
hexadecimal will reduce the number of
digits to only four per instruction.

• Table 3.3 shows the same program in
hexadecimal.

10/20/2024 Computer Architecture by Ahmed Al-Taie 11



INSTRUCTION MNEMONICS AND SYNTAX
• Assembly language is the symbolic

form of machine language.

• Assembly programs are written
with short abbreviations called
mnemonics.

• A mnemonic is an abbreviation that
represents the actual machine
instruction.

• Assembly language programming is
the writing of machine instructions
in mnemonic form, where each
machine instruction (binary or hex
value) is replaced by a mnemonic.

• Clearly the use of mnemonics is more meaningful than that of hex
or binary values, which would make programming at this low level
easier and more manageable.

• An assembly program consists of a sequence of assembly
statements, where statements are written one per line. Each line of
an assembly program is split into the following four fields: label,
operation code (opcode), operand, and comments.

• Figure 3.2 shows the four-column format of an assembly 
instruction.

• Labels are used to provide symbolic names for memory addresses. 

• A label is an identifier that can be used on a program line in order
to branch to the labeled line. It can also be used to access data
using symbolic names.

10/20/2024 Computer Architecture by Ahmed Al-Taie 12



INSTRUCTION MNEMONICS AND SYNTAX 
• The operand field consists of additional

information or data that the opcode requires.

• The operand field may be used to specify
constant, label, immediate data, register, or an
address.

• The comments field provides a space for
documentation to explain what has been done
for the purpose of debugging and maintenance.

• For the simple processor described in the
previous section, we assume that the label
field, which may be empty, can be of up to six
characters.

• There is no colon requirement after each label.
Comments will be preceded by “/”.

10/20/2024 Computer Architecture by Ahmed Al-Taie 13

• The maximum length of a label differs from
one assembly language to another.

• Some allow up to 32 characters in length,
others may be stricted to six characters.

• Assembly languages for some processors
require a colon after each label while
others do not.

• For example, SPARC assembly requires a
colon after every label, but Motorola
assembly does not.

• The Intel assembly requires colons after
code labels but not after data labels

• The operation code (opcode) field contains
the symbolic abbreviation of a given
operation.



INSTRUCTION MNEMONICS AND SYNTAX 

10/20/2024 Computer Architecture by Ahmed Al-Taie 14

• The simple mnemonics of the ten binary
instructions of Table 3.1 are summarized in Table
3.4.

• Let us consider the following assembly 
instruction:

START LD X \ copy the contents of location X into AC

The label of the instruction LD X is START, which means that it 
is the memory
address of this instruction. That label can be used in a program 
as a reference as shown in the following instruction:
BRA START \ go to the statement with label START



INSTRUCTION MNEMONICS AND SYNTAX 

10/20/2024 Computer Architecture by Ahmed Al-Taie 15

• The jump instruction will make the processor
jump to the memory address associated with the
label START, thus executing the instruction LD X
immediately after the BRA instruction.

• In addition to program instructions, an assembly
program may also include pseudo instructions or
assembler directives. Assembler directives are
commands that are understood by the assembler
and do not correspond to actual machine
instructions. For example, the assembler can be
asked to allocate memory storage.

• In our assembly language for the simple
processor, we assume that we can use the pseudo
instruction W to reserve a word (16 bits) in
memory.

For example, the following pseudo instruction reserves a
word for the label X and initializing it to the decimal value
350:

X W 350 \ reserve a word initialized to 350
Again, the label of the pseudo instruction W 350 is X, which 
means it is the memory address of this value. The following 
is the assembly code of the machine language
program of Example 1 in the previous section.
LD X \ AC X
MOV AC \ DR AC
LD Y \ AC Y
ADD \ AC AC þ DR
ST Z \ Z AC
STOP
X W 350 \ reserve a word initialized to 350
Y W 96 \ reserve a word initialized to 96
Z W 0 \ result stored here



INSTRUCTION MNEMONICS AND SYNTAX 

10/20/2024 Computer Architecture by Ahmed Al-Taie 16

• Example 2: In this example, we will write an
assembly program to perform the
multiplication operation: Z XY, where X, Y,
and Z are memory locations.

• As you know, the assembly of the simple CPU
does not have a multiplication operation. We
will compute the product by applying the
add operation multiple times.

• In order to add Y to itself X times, we will use
N as a counter that is initialized to X and
decremented by one after each addition
step.

• The BZ instruction will be used to test for the case
when N reaches 0. We will use a memory location to
store N but it will need to be loaded into AC before
the BZ instruction is executed.

• We will also use a memory location ONE to store the
constant 1. Memory location Z will have the partial
products and eventually the final result.

• The following is the assembly program using the
assembly language of our simple processor.

• We will assume that the values of X and Y are small
enough to allow their product to be stored in a single
word.



INSTRUCTION MNEMONICS AND SYNTAX 

10/20/2024 Computer Architecture by Ahmed Al-Taie 17

• For the sake of this example, let us
assume that X and Y are initialized to 5
and 15, respectively.

LD X \ Load X in AC
ST N \ Store AC (X original value) in N
LOOP LD N \ AC N
BZ EXIT \ Go to EXIT if AC ¼ 0 (N reached 0)
LD ONE \ AC 1
MOVAC \ DR AC
LD N \ AC N

SUB \ subtract 1 from N
ST N \ store decrements N
LD Y \ AC Y
MOVAC \ DR AC
LD Z \ AC Z (partial product)
ADD \ Add Y to Z
ST Z \ store the new value of Z
BRA LOOP
EXIT STOP
X W 5 \ reserve a word initialized to 5
Y W 15 \ reserve a word initialized to 15
Z W 0 \ reserve a word initialized to 0
ONE W 1 \ reserve a word initialized to 1
N W 0 \ reserve a word initialized to 0



ASSEMBLER DIRECTIVES AND COMMANDS

10/20/2024 Computer Architecture by Ahmed Al-Taie 18

• In the previous section, we introduced the
reader to assembly and machine languages.

• We provided several assembly code
segments written using our simple machine
model.

• In writing assembly language programs for a
specific architecture, a number of practical
issues need to be considered.

• Among these issues are the following:
 Assembler directives
 Use of symbols
 Use of synthetic operations
 Assembler syntax
 Interaction with the operating system

• The use of assembler directives, also called pseudo-
operations, is an important issue in writing assembly
language programs.

• Assembler directives are commands that are
understood by the assembler and do not correspond to
actual machine instructions.

• Assembler directives affect the way the assembler
performs the conversion of assembly code to machine
code.

• For example, special assembler directives can be used
to instruct the assembler to place data items such that
they have proper alignment.



ASSEMBLER DIRECTIVES AND COMMANDS

10/20/2024 Computer Architecture by Ahmed Al-Taie 19

• Alignment of data in memory is required for
efficient implementation of architectures.

• For proper alignment of data, data of n-
bytes width must be stored at an address
that is divisible by n, for example, a word
that has a two-byte width has to be stored
at locations having addresses divisible by
two.

• In assembly language programs symbols
are used to represent numbers, for
example, immediate data.

• This is done to make the code easier to
read, understand, and debug.

• Symbols are translated to their corresponding
numerical values by the assembler.

• The use of synthetic operations helps assembly
programmers to use instructions that are not directly
supported by the architecture.

• These are then translated by the assembler to a set of
instructions defined by the architecture.

• For example, assemblers can allow the use of (a
synthetic) increment instruction on architectures for
which an increment instruction is not defined
through the use of some other instructions such as
the add instruction.



ASSEMBLER DIRECTIVES AND COMMANDS

10/20/2024 Computer Architecture by Ahmed Al-Taie 20

• Assemblers usually impose some conventions in referring to hardware components
such as registers and memory locations.

• One such convention is the prefixing of immediate values with the special characters (#)
or a register name with the character (%).

• The underlying hardware in some machines cannot be accessed directly by a program.
• The operating system (OS) plays the role of mediating access to resources such as

memory and I/O facilities.
• Interactions with operating systems (OS) can take place in the form of a code that causes

the execution of a function that is part of the OS. These functions are called system calls.


