Buffer solution (المحلول المنظم)

Buffer solutions defined as a solution that resists changes in pH as a result of either dilution or small additions of strong acids or bases.

يعرف المحلول المنظم: بأنه المحلول الذي يقاوم التغير في قيمة الدالة الحامضية نتيجة التخفيف او اضافة كمية من حامض قوي او قاعدة قوية يعد المحلول منظما عندما لا تسبب اضافة الحامض القوي او القاعدة القوية تغيرا ملحوظا في قيمة الدالة الحامضية .

If a solution of acetic acid is mixed with a solution of sodium acetate, a buffer solution of certain pH value is formed. When dilute HCl is added then its H⁺ ions will react with acetate ion and acetic acid is formed which is sparingly ionized and hence will not change pH value. The same applies for NaOH solution, then OH⁻ ions will react with H⁺ ions of acetic acid to form water and again pH will not increase only little.

عندما يخلط محلول حامض الخليك مع محلول خلات الصوديوم يتكون محلول منظم ذو قيمة دالة حامضية معينة اذا اضيف اليه قليل من حامض الهيدروكلوريك المخفف فأن ايون الهيدروجين منه يتفاعل مع ايون الخلات في المحلول ليكون حامض الخليك الذي لا يتأين الا لدرجة قليلة فلا يقلل من قيمة الدالة الحامضية وبنفس الاسلوب اذا اضيف محلول هيدروكسيد الصوديوم اليه فأن ايونات الهيدروكسيد منه يتفاعل مع ايونات الهيدروجين في المحلول ليكون الماء فلا تزداد قيمة الدالة الحامضية بصورة كبيرة

Capacity of buffer solution قدرة المحلول المنظم

Each buffer solution certain capacity to withstand amounts of strong acid or strong base that is without changing (or cause little change) pH value of the solution. This ability is called capacity of the buffer solution.

قدرة المحلول المنظم: بأنه مقدار قدرة المحلول على استيعاب كميات معينة من الحامض القوي او القاعدة القوية بدون تغيير او تغير قليل جدا في قيمة الدالة الحامضية في المحلول.

Buffer solution also may be formed during titration of week acid like acetic acid with strong base like NaOH. The solution will contain a mixture of acetic acid not titrated and sodium acetate that formed by the addition of NaOH and therefore the pH value is slightly changed. If all the acid is neutralized and the solution contain CH₃COONa then pH value will rise suddenly at the end point of the reaction (equivalent point).

تتكون المحاليل المنظمة ايضا عند معايرة الحوامض الضعيفة مثل حامض الخليك مع قاعدة قوية مثل هيدروكسيد الصوديوم. اذا احتوى المحلول على مخلوط من حامض الخليك الذي لم يسحح بعد وخلات الصوديوم التي نتجت عن اضافة القاعدة القوية اي التسحيح ولهذا لا تتغير قيمة الدالة الحامضية للمحلول في هذه المرحلة الا الشيئ القليل. اما اذا تعادل كل من الحامض واصبح المحلول محتويا على خلات الصوديوم فأن قيمة الدالة الحامضية ترتفع بشكل مفاجئ وحاد عند نقطة التعادل او التكافؤ.

Buffer solution capacity depend on two factors: :

تعتمد قيمة قدرة المحلول المنظم على عاملين :-

1.Acid to salt ratio of molecular concentration degree

The capacity will be at maximum when the concentration of the salt equal to the concentration of the acid. This occur at the middle of titration (pH = pKa). If 50 ml of NaOH solution is added to 100ml of CH_3COOH solution (both at the same normality) then the mixture will contain equal concentrations of acetic acid and sodium acetate.

1- النسبة في درجة التركيز الجزيئي للملح والحامض ، حيث تصل القدرة الى اقصاها عندما يتساوى تركيز الملح مع تركيز الحامض ويحدث ذلك عند منتصف المعايرة حيث تكون قيمة الدالة الحامضية مساوية الى دالة تفكك الحامض.

فإذا اضيف ٥٠ ملاتر من هيدروكسيد الصوديوم الى ١٠٠مل من محلول حامض الخليك لهما نفس العيارية فأن المخلوط يحتوي على تركيزين متساويين من حامض الخليك وخلات الصوديوم.

2. The second factor is the concentrations of acid and salt:

Capacity of the buffer solution is increasing with the increase in the acid and salt concentrations.

٢- العامل الثاني فهو تركيز الملح والحامض : حيث تزداد القدرة مع زيادة التركيز

Types of buffer solutions انواع المحاليل المنظمة

1-Solution of a weak acid and one of its salts:

١ - المحلول المنظم لحامض ضعيف وأحد املاحه

2.Buffer solutions of a weak base and one of its salts.

٢ ـ المحلول المنظم لقاعدة ضعيفة وأحد املاحها

Types of buffer solutions انواع المحاليل المنظمة

1- Solution of a weak acid and one of its salts:

This buffer, then, is usually a mixture of an acid and one of its salts so In order to understand buffer action, consider first the equilibrium between a weak acid and its salt.

$$H_{2}O$$
 $HA_{(aq)}$
 $MA_{(S)}$
 $H^{+}_{(aq)}$
 $H^{+}_{(aq)}$
 $H^{+}_{(aq)}$
 $H^{-}_{(aq)}$
 $H^{-}_{(aq)}$

The value of the dissociation constant Ka:

ان قيمة ثابت التفكك الحامض ، تحسب من العلاقة الاتية :-

$$Ka = \frac{[H^+][A^-]}{[HA]}$$
 , $[H^+] = Ka \frac{[HA]}{[A^-]}$

In a mixture of a weak acid and its salt, the dissociation of the acid is repressed by the common ion effect, and [H⁺] may be taken as negligibly small by comparison with [HA] and [MA].

في خليط من حامض ضعيف وملحه، يتم تقليل تفكك الحامض من خلال تأثير الايون المشترك،ويمكن اعتبار [H] صغيرًا بشكل مهم بالمقارنة مع [HA] و [MA].

$$[H^+] = Ka \frac{[acid]}{[salt]}$$

by taking – logarithm of this equation

$$-\log [H^+] = -\log Ka + (-\log \frac{[acid]}{[salt]})$$

$$pH = pKa - log \frac{[acid]}{[salt]}$$

لحساب الدالة الحامضية لحامض ضعيف وملحه بوجود الايون المشترك :-

$$pH = pKa + log \frac{[salt]}{[acid]}$$

تم تعويض تركيز الحامض الغير متأين وتركيز الملح في المعادلة اعلاه ، حيث ان وجود الايون المشترك سوف يحرف التفاعل نحو اليسار وهذا يقلل من تفكك الحامض لذا يكون تركيز ايون الهيدروجين قليل جدا (ممكن اهماله) مقارنة بتركيز الحامض الغير متأين

What is the pH of a buffer solution (0.1N HF and 0.1N NaF) if pKa= 3.167, and what is the pH and change in pH (Δ pH) after addition of 0.01M HCl to the buffer solution?

$$HF = H^+ + \overline{F}$$

$$NaF \longrightarrow Na^+ + \overline{F}$$

$$pH = pKa + log \frac{[salt]}{[acid]}$$

$$pH = 3.167 + \log \frac{0.1}{0.1} = 3.167$$

After addition the strong acid, [H⁺] concentration is increased and the reaction directed to the left.

New concentration of acid = original con. of acid + con. strong acid (added) التركيز الجديد للحامض = تركيز الحامض الاصلى + تركيز الحامض القوى المضاف

$$[Acid]_{new} = 0.1 + 0.01 = 0.11 M$$

New concentration of salt = original con. of salt - con. acid (added)

التركيز الجديد للملح = تركيز الملح الاصلي
$$-$$
 تركيز الحامض المضاف [salt] $_{new} = 0.1 - 0.01 = 0.09 M$

$$pH = pKa + log \frac{[salt] - [strong\ acid]}{[acid\] + [strong\ acid\]}$$
 عند المنظم الدالة الحامضية عند المنظم

القانون المستخدم لحساب الدالة الحامضية عند

$$pH = pKa + \log \frac{[0.09]}{[0.11]}$$

$$pH = 3.167 + log \ 0.818$$

$$pH = 3.167 - 0.087 = 3.08$$

$$\Delta pH = pH_2 - pH_1 = 3.08 - 3.167 = -0.087$$

نلاحظ أن الفرق ضئيل بسبب الايون المشترك ولو أن هذه الاضافة كانت للماء ذو الدالة الحامضية 7 واصبح 4 أي بفارق 3 لعدم وجود الايون المشترك.

If strong base addition

عند اضافة قاعدة قوية مثل هيدروكسيد الصوديوم فأن تركيز ايونات الهيدروكسيد الناتجة عن اضافة القاعدة القوية تعادل ايونات الهيدروجين الناتجة عن تفكك الحامض الضعيف فيسير التفاعل نحو اليمين (طرديا) لسد النقص في تركيز ايون الهيدروجين وهذا يؤدي الى نقصان بتركيز الحامض وزيادة بتركيز الملح. ويتم حساب قيمة الدالة الحامضية كما في القانون ادناه:

pH =pKa + log
$$\frac{[salt]}{[acid]}$$

$$pH = pKa + log \frac{[\mathit{salt}] + [\mathit{strong base}]}{[\mathit{acid}] - [\mathit{strong base}]}$$

تستخدم لحساب الدالة الحامضية للمحلول المنظم بعد اضافة قاعدة قوية له

Q: Calculate the pH of above solution after addition of 0.01M of NaOH to the buffer solution. (سؤال خارجي)

2.Buffer solutions of a weak base and one of its salts.

This buffer, is usually a mixture of base and its salts. In order to understanded buffer action. Consider first the equilibrium between a weak base and its salt.

عادة ما يكون هذا المحلول المنظم خليطًا من القاعدة وأملاحها. من أجل فهم تأثير المحلول المنظم، نضع في اعتبار أولاً التوازن بين قاعدة ضعيفة وملحها.

The value of the dissociation constant K_b:

القوانين الاتية لحساب قيمة ثابت التفكك للقاعدة ، وتركيز القاعدة في المحاليل المنظمة :-

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$
 , $[OH^-] = K_b \frac{[B]}{[BH^+]}$

In a mixture of a weak base and its salt, the dissociation of the base is repressed by the common ion effect, and [OH-] may be taken as negligibly small by comparison with [B] and [BHM].

في خليط من قاعدة ضعيفة وملحها، يتم كبح تفكك القاعدة عن طريق تأثير ايون المشترك ،ويمكن اعتبار [-OH] صغيرًا بشكل مهم بالمقارنة مع [B] و [BHM].

$$[OH^-] = K_b \frac{[base]}{[salt]}$$

by taking – logarithm of this equation

-
$$\log [OH^{-}] = -\log K_b + (-\log \frac{[base]}{[salt]})$$

 $pOH = pK_b - \log \frac{[base]}{[salt]}$

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

القانون العام لحساب الدالة القاعدية للايون المشترك من قاعدة ضعيفة وأحد املاحها ومن ثم تطبيق pH + pOH = 14

نلاحظ انه تم تعويض تركيز القاعدة الغير متأينة وتركيز الملح في المعادلة حيث ان وجود الايون المشترك سوف يحرف التفاعل نحو اليسار وهذا يقلل من تفكك القاعدة لذا يكون تركيز ايونات الهيدروكسيد قليلة جدا (يمكن اهمالها) مقارنة بتركيز القاعدة الغير متأينة .

Addition of strong acid or stronge base

a عند اضافة حامض قوي

عند اضافة الحامض القوي سوف يؤدي الى معادلة ايونات الهيدر وكسيد الناتجة من تفكك القاعدة الضعيفة وبالتالي يجعل التفاعل طرديا (باتجاه اليمين) لسد النقص في تركيز ايونات الهيدر وكسيد ويزداد تركيز الملح ويتم حساب الدالة الحامضية كما يلي :-

$$pOH = pK_b + log \frac{[\textit{salt}]}{[\textit{base}]}$$

$$pOH = pK_b + log \frac{[salt] + [strong \ acid]}{[base] - [strong \ acid]}$$

By <u>addition of strong base</u> then [OH⁻] coming from this strong base will increase the [OH⁻] from weak base which means the reaction will be directed to the left.

<u>b</u>اضافة قاعدة قوية

عند اضافة القاعدة القوية سوف يؤدي الى ازدياد تركيز ايونات الهيدروكسيد الناتجة من تفكك القاعدة الضعيفة وبالتالي يجعل التفاعل عكسيا (نحو اليمين) ويقل تركيز الملح . ويتم حساب الدالة الحامضية كما يلي :-

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

$$pOH = pK_b + log \frac{[salt] - [strong \ base]}{[base] + [strong \ base]}$$

Ex: A buffered solution contains (0.5M) ammonium hydroxide (Kb = 1.8×10^{-5}) and (0.5 M) ammonium chloride, calculate:

- a. The pH of this solution?
- b. The change in pH, that occurs when adding of (0.1M) NaOH of the buffered solution?
- c. The change in pH, that occurs when adding of (0.2M) HCl of the buffered solution?

Solved problems about buffer solution

أمثلة محلولة عن المحلول المنظم

Q1: How many grams of potassium acetate CH_3COOK must be added to 1 L of 0.2M acetic acid solution to give buffer solution of pH=4.6 (pKa $CH_3COOH = 4.745$) (if the M.Wt $CH_3COOK = 98$ gm/ mole).

* المطلوب ايجاد عدد الغرامات خلات البوتاسيوم ونلاحظ بالسؤال ان تركيز الملح غير موجود • لذلك بحب حسابه كما بلي ؟

Sol)
$$pH = pK_a + log \frac{[salt]}{[acid]}$$

$$4.6 = 4.745 + \log \frac{[salt]}{0.2}$$

$$4.6 = 4.745 - \log 0.2 + \log [salt]$$

$$4.6 = 4.745 + 0.699 + \log [salt]$$

$$4.6 = 5.444 + \log [salt]$$

Log [salt] =
$$4.6 - 5.444 = -0.844$$
, \leftrightarrow [Salt] = 0.143 M

[salt] =
$$\frac{wt}{m.wt} \times \frac{1000}{1000}$$
 , $0.143 = \frac{wt}{98} \times \frac{1000}{1000}$,

$$wt_{(gm)} = 14.014 g$$

Q2: What is the pH of a solution that contain 0.5 M benzoicacid and 10g/L of sodium benzoate C_6H_5COONa , IF $Ka(C_6H_5COOH)=6.28x10^{-5}$, (M.Wt for benzoic acid= 144 gm / mole).

$$M_{[\text{salt}]} = \frac{wt}{m.wt} \times \frac{1000}{1000}$$

$$M_{[salt]} = \frac{10}{144} \times \frac{1000}{1000} = 0.069 \text{ mole / L}$$

$$pH = pKa + log \frac{[salt]}{[acid]} \rightarrow pH = -log Ka + log \frac{[salt]}{[acid]}$$

$$pH = 4.202 + log \frac{[0.069]}{[0.5]}$$

$$pH = 4.202 + log 0.138$$
$$= 4.202 - 0.86 = 3.342$$

Q3: Calculate the pH of a solution prepared by adding 10 ml of 0.1M CH₃COOH solution to 20ml of 0.1M CH₃COONa . If Ka of CH₃COOH = 1.8×10^{-5}

في هذه الحالة يجب حساب تراكيز كل من الحامض وملحه بعد مزجهما اي بعد تخفيف المحلول .

Sol)

For CH₃COOH

$$V_\text{T}$$
 = 20 + 10 =30 mL
$$M_1 V_1 = M_2 V_T \ , \ 0.1 \times 10 = M_2 \times 30 \quad , \quad M_2 = 0.033 \ M \ \text{[acid]}$$

For CH₃COONa

$$M_1V_1=M_2V_2$$
 , $0.1\times 20=M_2\times 30$, $M_2=\underline{0.067}\,\text{M}$ [salt]

$$pH = pKa + log \frac{[salt]}{[acid]}$$

$$pH = -\log Ka + \log \frac{[salt]}{[acid]} \rightarrow pH = -\log 1.8 \times 10^{-5} + \log \frac{0.067}{0.033}$$

pH=4.745 + 0.308 = 5.053

Q4: Calculate the pH of a solution that:

- a) 0.1 M CH₃COOH + 0.01M CH₃COONa, pKa CH₃COOH = 4.745?
- **b)** $0.1M \text{ NH}_4\text{OH} + 0.2M \text{ NH}_4\text{Cl}$, pKb NH₄OH = 4.745?

SOL)

$$pH = pKa + log \frac{[salt]}{[acid]}$$

$$=4.745 + \log \frac{0.01}{0.1} = 4.745 - 1 = 3.745$$

$$pOH = pKb + log \frac{[salt]}{[base]}$$

$$pOH = 4.745 + log \frac{0.2}{0.1} = 4.745 + 0.301 = 5.046$$

 $pKw - pOH = 14 - 5.046 = 8.954$

Q5: Calculate of the pH of a solution that is $0.5M \text{ NH}_4\text{OH}$ solution + $0.3M \text{ NH}_4\text{Cl}$ solution pK_b= 4.745.

Sol)

$$pOH = pK_b + log \frac{[\textit{salt}]}{[\textit{base}]}$$

$$pOH = 4.74 + log \frac{0.3}{0.5} = 4.745 - 0.222 = 4.52$$

$$pH = pK_w - pOH$$

$$pH = 14 - 4.523 = 9.477$$

Q6: What is the pH value of a solution that is 0.04F in formic acid and 0.1F sodium formate (HCOONa). Ka (HCOOH) = 1.8×10^{-4} .

pH =pKa +
$$log \frac{[salt]}{[acid]}$$

= $3.745 + log \frac{0.1}{0.04}$

$$pH = 3.745 + 0.398 = 3.347$$

Q7: Calculate the percentage of CH_3COONa / CH_3COOH which give a solution of pH =5, Ka (CH_3COOH) =1.8 × 10⁻⁵.

$$pH = pKa + log \frac{[salt]}{[acid]}$$

if the ratio is = (x),

$$5 = 4.745 + \log X$$

 $\log X = 5 - 4.745$, $\log x = 0.255$
 $X = 1.799 \sim 1.8$

$$Ka = \frac{[H^+][Ac^-]}{[HAc]}$$

$$pH = 5 \rightarrow [H^+] = 10^{-5} M$$

$$1.80 \times 10^{-5} = \frac{10^{-5} [Ac^{-}]}{[HAc]}$$
 , $\frac{[Ac^{-}]}{[HAc]} = \frac{1.8 \times 10^{-5}}{10^{-5}} = 1.8$

$$pH=5$$
 يعني يتم مزج خلات الصوديوم مع حامض الخليك بنسبة $\frac{1.8}{1}$ ليعطي محلول بفر

Q8: A 50 mL Buffered solution contain 0.15 M Formic acid (HCOOH) Ka= 1.8x10⁻⁴ and 0.1 M sodium formate (HCOONa) Calculate:

- **1-** The pH of the solution
- 2- The pH after addition of 10 mL of 0.2 M HCl Solution
- 3- The change in pH after addition of 5 mL of 0.3M NaOH solution

1-
$$pH = pKa + log \frac{[salt]}{[acid]}$$

pH =
$$-\log 1.8 \times 10^{-4} + \log \frac{0.1}{0.15}$$

pH = $3.745 - 0.176 = 3.569$

عند اضافة الحامض (بحجم وتركيز معينين) فأن المحلول سوف يتخفف لذا يجب حساب تراكيز كل من -2 الحامض والملح المكون للبفر وتركيز الحامض المضاف بعد التخفيف

 $V_T = 50+10 = 60 \text{ mL}$

$$pH = pKa + log \frac{[salt] - [strong acid]}{[acid] + [strong acid]}$$

$$pH = -log \ 1.8x10^{-4} + log \ \frac{0.083 - 0.033}{[0.125 + 0.033]}$$

$$pH = 3.745 + log \frac{0.05}{0.158}$$

$$pH = 3.745 + log \ 0.316$$

$$pH = 3.745 - 0.5$$

$$= 3.245$$