(الاتزان الايوني) IONIZATION EQUILIBRIUM

It is the dynamic situation between ions released by weak electrolyte in their solutions with the electrolyte solution.

التوازن او الاتزان الايوني هو حالة ديناميكية بين الايونات التي يطلقها الكتروليت ضعيف في محاليلها مع المحلول الالكتروليتي

Materials in its aqueous solution classified into two types:

تقسم المواد في محاليلها المائية الى نوعين هما :-المواد الكتروليتية Electrolytes المواد غير الكتروليتية non elctrolytes

تقسم الالكتروليتات الى:-

Electrolytes divided into:

A. Strong Electrolyte materials

Materials that totally ionized in their aqueous solutions are called strong electrolytes. These electrolytes are good electricity conductors, high solubility, such as strong acids and strong bases.

أ- المواد الالكتروليتية القوية :- هي المواد التي تتأين كليا في محاليها المائية . تمتاز هذه الكتروليتات بالتوصيلية الجيدة للتيار الكهربائي وذوبانية عالية ومن هذه المواد الحوامض والقواعد القوية .
$$H_2O$$
 H_2O H_2O H_3O H_4O H

B. Weak electrolyte materials

Materials that partially ionized in their aqueous solutions, reaching ionic equilibrium called weak electrolytes. These electrolytes are weak electricity conductors such as weak acids and bases.

ب- المواد الالكتروليتية الضعيفة: هي المواد التي تكون ذائبة جزئيا في المحاليل المائية بحيث تصل الى حالة الاتزان الايوني وتمتاز ايضا بالتوصيلية الكهربائية الضعيفة مثل الحوامض والقواعد الضعيفة.

$$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

NON ELECTROLYTE MATERIALS

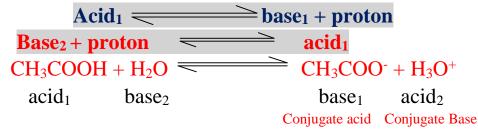
These are the materials that do not release any ions in their aqueous solutions such as ethanol or glucose.

$$H_2O$$
 C_2H_5OH
 C_2H_5OH
 C_2H_5OH
 C_2H_5OH

ACIDS AND BASES

الحوامض والقواعد

1. Arrhenius concept


Acid is a material that ionized in water to give hydrogen ions (hydronium ions), while base is a material that ionized in water to give hydroxide ions.

1- مبدأ ارهينيوس :- وفقا لهذا المبدأ فأن الحامض هو المادة التي تتأين في الماء لتعطي ايون الهيدروجين ، في حين ان القاعدة هي المادة التي تتأين في الماء لتعطي ايون الهيدروكسيد .

$$HCl \rightarrow H^+ + Cl^-$$
, $NaOH \rightarrow Na^+ + OH^-$

2.Bronsted and Lowry concept

Acid is any substance that is capable of donating proton base is any substance can accept a proton,, while base is any substance can accept proton.

The proton donating charater of an acid manifests it self only in the presence of a proton acceptor.

$$HNO_3 + H_2O \longrightarrow NO_3^- + H_3O^+$$
 $Acid_1 \quad base_2 \quad base_1 \quad acid_2$
 $Conjugate \; Base \; Conjugate \; acid$
 $NH_3 + H_2O \longrightarrow NH_4^+ + OH^ base_1 \quad acid_2 \quad Conjugate \; acid \quad Conjugate \; Base$

Water is amphprotic solvent because it exhibits both acidic and basic properties

After an acid has donate a proton the species that remains is capable of accepting proton to reform the original acid then every acid is paired with its corresponding base which is called as conjugate base.

3. Lewis Concept

Acid is any material capable of accepting pair of electrons such as AICI₃, BF₃ base is any substance can donate pair of electrons such as F⁻, NH₃

$$BF_3 + :NH_3 \rightarrow F_3B :NH_3$$

ION PRODUCT CONSTANT OF WATER

Aqueous solutions contain small amount of hydronium ion H_3O^+ and hydroxide ion OH^-

المحاليل المائية تحتوي على كمية قليلة من ايون الهيدرونيوم وايون الهيدروكسيد .
$$H_3O^+ + OH^-$$

Water dissociates to H⁺ and OH⁻ ions in aqueous solutions which are strongly contacted to water molecules. Applying mass product law gives the following equation.

$$K = \frac{[H_3 O^+][OH^-]}{[H_2 O]^2}$$

The concentration of water is enormous (each one liter of water equal to 55.5 M) when compared with the concentration of hydrogen and hydroxide ions. As consequence water concentration can be considered as a constant.

$$K [H_2O]^2 = Kw = [H_3O^+] [OH^-] \text{ or } Kw = [H^+][OH^-]$$

$$H_2O \longrightarrow H^+ + OH^-$$

Where the constant $[H^+]$. $[OH^-] = K_{[H2O]} = K_w$ is the ion- product constant for water, and by using water concentration:

$$K (55.5)^2 = K_w = 1.008 \times 10^{-14}$$
 at 25 °C

The approximation at room temperature is $K_w \approx 1.0 \times 10^{-14} \text{ mole/L}$

Kw depending on temperature (i.e. Kw increasing with the increase in temperature (at 50° C = 5.47×10^{-14} and at 100° C = 49×10^{-14}).

Lecture 5

The ion-product constant for water permits to easily find the hydronium and hydroxide ion concentrations of aqueous solutions.

Kw = ion product constant of water

$$Kw = [H^+][OH^-] = 1.0 \times 10^{-14} \ mole^2/L^2 \quad in \ case \ of \ pure \ water.$$

$$Kw = [H^+] \cdot [OH^-] = 1.0 \times 10^{-14}$$

$$\sqrt{kw} = [H^+] = [OH^-] = 10^{-7} \text{ mole/L} = M$$

By taking the logarithm of this equation

$$Kw = [H^{+}][OH^{-}]$$

$$-\log Kw = -\log ([H^+][OH^-])$$

$$-\log Kw = -\log [H^+] - \log [OH^-]$$

$$pKw = pH + pOH = 14$$

if pH < 7 then the solution acidic.

if pH > 7 then the solution is basic.

If pH =7 then the solution is equilibrium.

Calculate the pH and pOH values of a solution in which the hydronium ion $[H_3O^+]$ concentration is $2.0 \times 10^{-3} (0.002)$ M.

$$[H^+] = [H_3O^+] = 2.0 \times 10^{-3} \text{ mole/L}$$

$$pH = -log [H^+]$$

= $-log [2.0 \times 10^{-3}] = 2.699$

$$pOH= 14- pH$$

= $14 - 2.699 = 11.301$

Ex.2) Calculate the hydronium and hydroxide ion concentration of pure water at 25°C and 100°C [if $K_w=1.00\times10^{-14}at$ 25°C and $K_w=49.00\times10^{-14}$ at $100^{\circ}C$] . Sol.)

Because OH^- and H_3O^+ are formed only from the dissociation of water , their concentration must be equal :

$$[H^{+}] = [OH^{-}]$$
 $Kw = [H^{+}] \cdot [OH^{-}]$
 $\sqrt{Kw} = [H^{+}] = [OH^{-}] = 10^{-7} \text{ mole/L or } (M)$

A t 25°C

$$[H^{+}] = [OH^{-}]$$

= $\sqrt{1.00 \times 10^{-14}}$
= 1.00×10^{-7} mole/L

A t 100°C

$$[H^{+}] = [OH^{-}]$$

= $\sqrt{49.00 \times 10^{-14}}$
= 7.00×10^{-7} mole/L

EQUILIBRIUM CONSTANTS For Pair ACIDS AND BASES ثابت الاتزان لزوج الحامض والقاعدة

Calculation of hydronium and hydroxide ions for strong, acids and bases and weak acids bases.

1-Strong acids:

The strong Acids will completely ionized in its aqueous solution, as shown by one arrow;

$$HA \, \rightarrow \, H^+ \, + A^+ \hspace{0.5cm} \text{,} \hspace{0.5cm} \text{therefore} \hspace{0.5cm} \left[H^+ \right] \, = \left[\begin{array}{cc} A^+ \right]$$

Lecture 5

Ex.1) Calculate [H⁺] and pH of 0.01 M HCl solution

$$HCl \rightarrow H^+ + Cl^-$$

before ionization 0.01 0 0

after ionization 0 0.01 0.01

 $[H^+] = 0.01 \text{ M}$

 $pH = -log [H^+]$ $= -\log 0.01 = 2$

Ex:2) Calculate pH and pOH for 0.15 M H₂SO₄

 $H_2SO_4 \longrightarrow 2H^+ + SO_4^{-2}$

before ionization 0.15 0 () after ionization 0 2 x 0.15 0.15

 $[H^+] = 2 \times 0.15$

 $[H^+] = 0.3 \text{ M}$

 $pH = -log [H^+]$

= -log 0.3

pH = 0.523

Kw = pH + pOH = 14

pOH = 14 - 0.523

pOH = 13.477

2- Week acids:

The Weak Acids will incompletely ionize (partial ionization) in its aqueous solution, and shown by two reverse arrows. So Ionic equilibrium in is occurring.

$$Y = \frac{1}{1 - 1} \frac{1}{1 - 1}$$

$$CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$$

$$a_{H_2O} + a_{CH_2COO} -$$

$$K_a = \frac{a_{H_3O^+}.a_{CH_3COO^-}}{a_{CH_3COOH}.a_{H_{20}}}$$

a = c.f for dilute solutions f = 1, then

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C0OH] \cdot [H_2O]}$$

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C0OH]}$$
, since [H₂O] =Constant

Ka is a ratio between the ionized part of the acid and unionized part of the weak acid Ka is a constant provided temperature and pressure is constant and called acid ionization or dissociation constant.

$$K_b = \frac{K_w}{K_a}$$
 for Conjugate Base

Ex. Calculate [H⁺] of 0.1 M CH₃COOH at 25 °C ($Ka = 1.8 \times 10^{-5}$)

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C0OH]}$$

Before ionization 0.1 0

After ionization 0.1 - x x

Ka =
$$1.8 \times 10^{-5} = \frac{(x)(x)}{0.1-x}$$

1.8 × 10⁻⁵ = $\frac{X^2}{0.1}$ x is small value and hence it is neglected

$$x^2 = 1.8 \times 10^{-6}$$
 $x = \sqrt{1.8 \times 10^{-6}}$

 $x = 1.342 \times 10^{-3} \text{ mole/L}$

CALCULATION OF HYDROXID ION CONCENTRATIO

1. Strong bases

The strong Bases will completely ionize in its aqueous solution and shown by one arrow.

القواعد القوية : هي المواد التي تتأين كليا في محاليها المائية وتمثل بسهم واحد في معادلة التفاعل .

$$NaOH \rightarrow Na^+ + OH^-$$

$$Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}$$

Ex 1: Calculate the hydronium and hydroxide ion concentrations in 0.2M aqueous NaOH solution? if $Kw=1\times10^{-14}$

$$\begin{array}{ccc}
\text{NaOH} & \longrightarrow & \text{Na}^+ + \text{OH}^- \\
\text{o.2} & 0 & 0 \\
0 & 0.2 & 0.2
\end{array}$$

 $[OH^{-}] = 0.2 \text{ M}$

$$[H^+] = \frac{KW}{[OH^-]} = \frac{1.00 \times 10^{-14}}{0.2}$$

$$[H^+] = 5.00 \times 10^{-14} \text{ mole /L}$$

2. Week bases:

The Weak Bases will incompletely ionize (partial ionization) in its aqueous solution, and shown by two arrows. So Ionic equilibrium in is occurring.

القواعد الضعيفة :- هي المواد التي تتأين جزئيا في محاليها المائية وتمثل بسهمين متعاكسين في معادلة التفاعل ، وتحدث فيها حالة الاتزان الايوني .

$$NH_3 + H_2O$$
 \longrightarrow NH_4OH \longrightarrow $NH_4^+ + OH^-$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4 OH]}$$

 $POH = -log [OH^{-}]$

Kb is base ionization constant

$$K_a = \frac{K_w}{K_b}$$
 for Conjugate Acid

NH₄OH \longrightarrow NH₄⁺ + OH

Base Conjugate Acid

Ex: Calculate $[OH^-]$, pH and pOH of 0.1M ammonia solution at 25 $^{\circ}C$ if Kb =1.8 \times 10⁻⁵.

Sol)
$$K_b = \frac{[NH_4^+][OH^-]}{NH_3]}$$

$$NH_4OH \longrightarrow NH_4^+ + OH^-$$

Before ionization 0.1M zero zero

After ionization 0.1- x x x

$$K_b = \frac{(x)(x)}{0.1+x} = 1.8 \times 10^{-5}$$
 (x is ignored)

$$1.8 \times 10^{-5} = \frac{x^2}{0.1}$$

$$x = [OH^{-}] = 1.342 \times 10^{-3}$$

$$pOH = -log[OH^{-}]$$

$$= -\log 1.342 \times 10^{-3}$$

$$= 2.872$$

$$pH = 14- pOH$$

$$= 14 - 2.872$$

$$= 11.128$$

Ex: Calculate the pH and pOH value of 1.0×10⁻³M acetic acid at 25 °C if Ka=1.8×10⁻⁵?

$$K_a = \frac{[H_3O^+] \cdot [CH_3C00^-]}{[CH_3C0OH]}$$

CH₃COOH −−−− $CH_3COO^- + H^+$

Before ionization

0.001

zero

zero

After ionization

0.001-x

Χ

Χ

$$1.8 \times 10^{-5} = \frac{x \cdot x}{0.001 - x}$$
 x is ignored

$$1.8 \times 10^{-5} = \frac{x^2}{0.001}$$

=2.621 ×
$$10^{-3}$$

pH = -log [H] = -log 2.621 × 10^{-4}
= -log 2.621xlog 10^{-4}
=2.582

$$pOH = 14 - pH$$

= 14 - 2.582
= 11.418

Ex.1) Calculate [OH-], pH, and pOH of 0.1 M ammonia solution at 25C($k_b = 1.8 \times 10^{-5}$) (note :solution in the same lecture5)

Ex.2): Calculate pOH and pH for 0.15 M Ca(OH)₂

المصطلح بالانكليزي	معناه بالعربي
Concentration	تركيز
lonization	تأين
Dynamic	حركي
Electrolyte	الكتروليت
Released	اطلاق
Classified	تصنف
Aqueous	مائي
Electricity conductor	موصل كهربائيا
Partially ionized	متأين جزئيا
Solution	محلول
Common	مشترك
Concept	مبدأ
Donate	تهب
Accept	تقبل
Reform	يعيد التكوين
Conjugate	قرين
Pair	زوج
Dissociate	يتفكك
Associate	يترابط
Invariant	ثابت (غير متغير)
Enormous	كبير الحجم
Approximation	كبير الحجم تقريبي نسبة
Ratio	
Ignored	يهمل
part	جزء
Relation	العلاقة
Value	قيمة