SALTS AND SALTS HYDROLYSIS

Neutralization reactions: are the reactions between acid and base to give salt and water. The basic reaction is the combination between the positive part of the base with the negative part of the acid.

تفاعلات التعادل: هي التفاعلات الناتجة عن تفاعل حامض مع قاعدة لتكوين ملح وماء و التفاعل الاساس يحدث بين الجزء الموجب من القاعدة و الجزء السالب من الحامض

$$KOH + HCl \longrightarrow KCl + H_2O$$
Base Acid Salt water

Salt hydrolysis is defined as the reaction between the salt ions with water ions to give week acid or week base.

التحلل المائي للملح: يعرف على انه التفاعل بين ايونات الملح وايونات الماء ليعطي حامض ضعيف او قاعدة ضعيفة.

$$H_2O \longrightarrow H^+ + OH^-$$

$$CH_3COO^- + H_2O \longrightarrow CHCOOH + OH^-$$

Salts are classified in to four main types:

1-Solutions of salts derived from strong acids and strong bases:

2-Solutions of salts derived from weak acids and strong bases : محاليل الاملاح المشتقة من حامض ضعيف وقاعدة قوية

3- Solution of salts derived from strong acid and weak base. 3- Solution of salts derived from strong acid and weak base. 3- Solution of salts derived from strong acid and weak base.

4-Solution of salts derived from weak acid and weak base. 4-محاليل الاملاح المشتقة من حامض ضعيف وقاعدة ضعيف 4-محاليل الاملاح المشتقة من حامض

1-Solutions of salts derived from strong acids and strong bases:

1 - A NaOH + HCl \rightarrow NaCl + H2O Strong base strong acid salt water $NaCl \longrightarrow Na^+ + Cl^ H_2O \longrightarrow H^+ + OH^-$

NaCl completely dissociated in water, while the ionization of water is partially giving equal numbers of H⁺ and OH⁻ ions, therefore the solutions of these salts are neutrals.

يتفكك الملح (كلوريد الصوديوم) في الماء الى ايوناته كما ان جزيئات الماء تتأين جزئيا وتكون تراكيز ايونات الهدروجين مساوية الى تركيز ايونات الهيدروكسيد ولهذا تكون محاليل هذه الاملاح متعادلة

$$[H^+] = [OH^-] = 1.0 \times 10^{-7} \text{ mole /L}$$

 $pH = -log [H^+] = -log 1.0 \times 10^{-7} = 7$

As an example for **strong acids** HCl, HI, H₂SO₄, HNO₃ and examples for **strong bases** are KOH and NaOH. The solution of neutral salts can be acidic (CuSO₄) or neutral (NaCl) or basic (Na₂CO₃). Salts that do not hydrolysis in water like NaCl, BaClO₃, the positive ions do not react with OH⁻ ion and the negative ions do not

react H⁺ ion that means and hence the solution remain neutral dissolution involves only the separation of negative and positive parts of the salts. Therefore the hydrolysis constant for these salts not calculated.

من الامثلة على الحوامض القوية حامض الهيدروكلوريك والكبريتيك والنتريك والهيدروايوديك ومن الامثلة على القواعد القوية هيدروكسيد الصوديوم وهيدروكسيد البوتاسيوم وهيدروجين ولا البوتاسيوم والاملاح التي تتحلل مائيا لا تتفاعل ايوناتها السالبة مع ايون الهيدروجين ولا ايوناتها الموجبة مع ايونات الهدروكسيل وبالتالي يبقى المحلول متعادل لان عملية الاذابة لا تتضمن سوى فصل الايونات السالبة عن الايونات الموجبة ولهذا السبب لا تحسب قيمة ثابت التحلل المائى للأملاح المشتقة من حامض قوى وقاعدة قوية .

2-Solutions of salts derived from weak acid and strong base:

2- محاليل الاملاح المشتقة من حامض ضعيف وقاعدة قوية: مثال ملح خلات الصوديوم

$$\mathsf{CH}_3\mathsf{COOH} + \mathsf{NaOH}$$
 \Longrightarrow $\mathsf{CH}_3\mathsf{COONa} + \mathsf{H}_2\mathsf{O}$ ماء ملح ملح ملح $\mathsf{CH}_3\mathsf{COONa}$ $\overset{\mathsf{H}_2\mathcal{O}}{\longrightarrow} \mathsf{Na}^+_{(aq)} + \mathsf{H}^+_{(aq)}$ $\mathsf{H}^+_{(aq)}$ $\mathsf{H}^+_{(aq)}$ $\mathsf{CH}_3\mathsf{COOH}$

Sodium acetate salt is completely dissociated in water to acetate and sodium ion. Acetate ion reacts with H⁺ ion to give acetic acid,

which is lead decreasing H^+ ions and become $[OH^-] > [H^+]$ i.e. basic solution.

يتفكك ملح خلات الصوديوم في الماء الى جذر الخلات السالب وايون الصوديوم الموجب. يتفاعل جذر الخلات مع ايون الهيدروجين الناتج من التأين الجزئي للماء فيتكون حامض الخليك الضعيف، وهذا يؤدي الى نقصان في تركيز ايون الهيدروجين (اقل من ايون الهيدروكسيد) فيكون المحلول ذو صفة قاعدية.

Hydrolysis constant of this salt: ثابت تحلل الملح

At equilibrium the hydrolysis of this type of salt can be presented as follows:

$$CH_3COO^- + H_2O \longrightarrow CH_3COOH + OH^-$$

$$Constant = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-][H_2O]} = K_b = K_h$$

Salt hydrolysis constant = base ionization constant

At first a very small concentration of hydrogen and hydroxide ions from the small but finite partial ionization of water will initially present. As explained above, CH₃COO⁻ ion combination with H⁺ ion which can be only obtained from dissociation of water, the dissociation simultaneously an equivalent quantity of hydroxide ion, and when expression water concentration is constant, (H₂O negligible) the law becomes:

اولا يتأين الماء جزئيا مكونا ايونات الهيدروجين والهيدروكسيد والتي تعتبر قليلة ومحددة . بعدها يرتبط ايون الخلات السالب مع ايون الهيدروجين الموجب الناتج من تأين الماء وهذا يحتاج الى كمية مكافئة من ايونات الهيدروكسيد وعند اهمال تركيز الماء لانه يعتبر ثابت في المحلول وكما تم تفسيره مسبقا.

$$K_h = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]}$$

[OH-] presents bases concentration (يمثل تركيز القاعدة الموجودة) [CH3COO-] present un hydrolyzed salt concentration (يمثل تركيز الملح الغير متحلل)

ادناه القانون الذي يستخدم لحساب ثابت التحلل للأملاح المشتقة من حامض ضعيف وقاعدة قوية :-

$$K_h = \frac{[acid][base]}{[un\ hydrolyzed\ salt]}$$

This means hydrolysis constant of the salt is the multiplication yield of base concentration into acid concentration at hydrolysis divided by the concentration of un hydrolyzed salt. This law is general for all salts derived from week acid and strong base.

يعرف ثابت التحلل المائي للملح على انه حاصل ضرب تركيز الحامض في تركيز القاعدة مقسوما على تركيز الملح الغير متحلل وهذا قانون عام يشمل الاملاح المشتقة من حامض ضعيف وقاعدة قوية .

Degree of hydrolysis

درجة التحلل المائي

Water hydrolysis of the salt can be defined as the amount that hydrolyzed of one mole (gram molecular weight) of the solution at equilibrium.

[CH₃COOH] = [OH₋] =
$$\frac{X}{V}$$
; [CH₃COO₋] = $\frac{(1-X)}{V}$

$$K_{h} = \frac{[CH_{3}COOH][OH^{-}]}{[CH_{3}COO^{-}]}$$

$$K_{h} = \frac{\frac{X \cdot X}{V \cdot V}}{\frac{(1 - X)}{V}}$$

$$K_{h} = \frac{X^{2}}{(1 - X)V}$$

$$K_{h} = \frac{X^{2}}{(1 - X)V}$$

X =degree of hydrolysis is increasing with the increase in dilution.

X=در جة تحلل الملح ويمكن ملاحظة بأنها تزداد باز دياد التخفيف

The relation between hydrolysis constant, ionization constant and ion product of water.

$$H_2O \longrightarrow H^+ + OH^-$$
 -----(1)

$$CH_3COOH$$
 \longrightarrow $H^+ + CH_3COO^-$ -----(2)

$$CH_3COO^- + H_2O = CH_3COOH + OH^- - (3)$$

و بتطبيق قانون فعل الكتلة عند التوازن نحصل على :-

(من المعادلة الاولى)
$$Kw=[OH^-][H^+]$$
 من المعادلة الثانية $K_a=rac{[CH_3COO^-][H^+]}{[CH_3COOH]}$

(من المعادلة الثالثة)
$$K_h = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]}$$

$$\frac{Kw}{Ka} = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]} = K_h$$

Since that $K_h = K_b$

$$\frac{K_w}{K_a} = K_b$$

By taking the -logarithm of this equation.

$$-\log K_w - (-\log K_a) = -\log K_h$$

$$pK_W - pK_a = pK_h$$

$$pK_W - pK_a = pK_h$$

##Calculate the pH of this salt

$$\frac{Kw}{Ka} = \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]} = K_h$$

 $[CH_3COOH] = [OH]$, $C_S =$ the original salt concentration

$$\frac{K_w}{K_a} = \frac{[OH^-]^2}{C_s} = \frac{K_w}{K_a} C_s = [OH^-]^2$$

$$Since ; [OH^-] = \frac{K_w}{[H^+]}$$

$$\frac{K_w}{K_a} C_s = \left[\frac{K_w}{[H^+]}\right]^2$$

$$\frac{1}{K_a} C_s = \frac{K_w}{[H^+]^2} , \qquad [H^+]^2 = \frac{K_w K_a}{C_s}$$

$$[H^{+}] = \sqrt{\frac{Kw.Ka}{C_{S}}}$$

By taking the -logarithm of this equation

$$-log_{[H}^{+}] = -log_{[} \frac{Kw.Ka}{C_{S}}]^{1/2}$$

$$-\log_{[H^{+}]} = -\frac{1}{2} \log Kw - \frac{1}{2} \log Ka + \frac{1}{2} \log C_{s}$$

$$PH = \frac{1}{2} \log Kw + \frac{1}{2} \log Ka + \frac{1}{2} \log C_{s}$$

$$(or) \quad pH = \frac{1}{2} (pKw + pKa + \log Cs)$$

A special law is derived to calculate pH of solution of salts derived from weak acid and strong base.

هذا القانون مشتق بشكل خاص لحساب قيمة الدالة الحامضية لمحلول الملح المشتق من حامض ضعيف وقاعدة قوية . **Ex**. Calculate the pH and Kh of 0.01M KCN solution , if Ka (hydrocyanic acid) = 6.2×10^{-10} at room temperature.

يتكون ملح سيانيد البوتاسيوم من قاعدة قوية و هي هيدر وكسيد الصوديوم وحامض ضعيف هو حامض الهيدر وسيانيك

$$pH = \frac{1}{2} \log Kw + \frac{1}{2} \log Ka + \frac{1}{2} \log C_s$$

$$= \frac{1}{2} 14x + \frac{1}{2} (-\log 6.2 \times 10^{-10}) + \frac{1}{2} (\log 0.01)$$

$$= 7 + 4.604 - 1$$

$$= 10.604$$

$$K_h = \frac{Kw}{Ka} = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}}$$

$$= 1.613 \times 10^{-5}$$

Ex. Calculate pH value of 0.02M of C_6H_5COONa solution if pKa of benzoic acid = 4.202.

ملاحظة : تتكون بنزوات الصوديوم من حامض البنزويك وهو حامض ضعيف ومن قاعدة قوية هي هيدروكسيد الصوديوم .

3- Solution of salts derived from strong acid and weak base.

These salts are for example $Pb(NO_3)_2$, $MgBr_2$, $FeCl_3$, $CuSO_4$, $FeSO_4$, NH_4Cl is formed by the reaction:

$$HC1 + NH_4OH \longrightarrow NH_4C1 + H_2O$$

Strong acid weak base Salt water

When this salt is dissolved in water it ionized.

Ammonium ion reacts with hydroxide ion to from ammonium hydroxide (weak base), which is lead to decreasing OH⁻ concentration and increasing H⁺ concentration, [H⁺]>[OH] i.e., acid solution.

عند ذوبان كلوريد الامونيوم في الماء يتكون ايوني الامونيوم الموجب والكلوريد السالب يتحد ايون الامونيوم مع ايون الهيدروكسيد السالب الناتج من تأين الماء ، فيتكون هيدروكسيد الامونيوم و هذا يؤدي الى نقصان في تركيز ايون الهيدروكسيد وزيادة في ايونات الهيدروجين في المحلول فلذلك يكون المحلول ذو صيغة حامضية .

Calculation of hydrolysis constant of this salt.

$$NH_4^+ + H_2O$$
 \longrightarrow $NH_4OH + H^+$

By applying the law of mass action along the lines of case 1, the following equations are obtained:

$$Constant = \frac{[NH_4OH][H^+]}{[NH_4^+][H_2O]}$$

and when expression water concentration is constant, (H₂O negligible) the law becomes:

$$K_h = \frac{[NH_4OH][H^+]}{[NH_4^+]}$$

 K_h = hydrolysis constant for the salt

Since $[H^+]$ = acid concentration

 $[NH_4OH]$ = base concentration

 $[NH_4^+]$ = concentration of unhydrolyzed salt

Then

$$K_h = \frac{[base][acid]}{unhydrolyzed\ salt}$$
 ($K_h = degree\ of\ hydrolysis$)

تحسب درجة التحلل بنفس الطريقة السابق كما تم ذكرها بالملح المشتق من حامض ضعيف وقاعدة قوية

$$K_h = \frac{X^2}{(1 - X)V}$$

Calculation the pH of salt solution

حساب الدالة الحامضية لمحلول الملح

pH value can be calculated for the acid NH₄⁺ as follows:

(من الجداول) يمكن حساب الدالة الحامضية لهذه المحاليل باعتبار ان $K_h=K_a$ وقيمة ثابت تفكك الحامض (من الجداول) $K_h=K_a$ (from tables) and using the relations

$$K_a = \frac{[NH_3][H^+]}{NH_4^+}$$

Since $[NH_3] = [H^+]$, $[NH_4^+] = Cs$

$$K_a = \frac{[H^+]^2}{[NH_4^+]}$$

[H⁺]² = Ka . [NH₄⁺] = Ka . Cs

Cs is ammonium ion concentration which present the un hydrolyzed salt concentration and equal approximately to the original salt concentration.

. هو تركيز ايون الامونيوم والذي يمثل تركيز الملح الغير متحلل يساوي التركيز الاصلي تقريبا Cs Ch^+ $\mathrm{Ch}^ \mathrm{Ch}^ \mathrm{Ch}^-$

حساب تركيز ايون الهيدروجين املاح مشتقة من حامض قوى وقاعدة ضعيفة

$$[H^+] = \sqrt{\frac{Kw .Cs}{Kb}}$$

By taking the -logarithm

$$\begin{split} -log[H^+] &= -\frac{1}{2} \ log K_w + \frac{1}{2} \ log K_b - \frac{1}{2} \ log C_s \\ pH &= \!\!\! \frac{1}{2} \ pK_w - \frac{1}{2} \ pK_b - \frac{1}{2} log C_s \end{split}$$

$$pH = \frac{1}{2} (pK_{w}-pK_{b}-logC_{s})$$

This equation is a general equation to calculate pH values for solution derived from weak base an strong acid.

المعادلة اعلاه هي المعادلة العامة لحساب قيمة الدالة الحامضية لمحلول ملح مشتق من قاعدة ضعيفة وحامض قوي .

Ex: Calculate pH and Kh of 0.1N NH₄Cl solution if Kb of NH₄OH 1.8×10⁻⁵ at 25°C?
Sol)

NH₄Cl is formed by weak base NH₄OH and strong acid HCl.

$$pH = \frac{1}{2} pK_w - \frac{1}{2} pK_b - \frac{1}{2} logC_s$$

$$= \frac{14}{2} - \frac{1}{2} (-logK_b) - \frac{1}{2} log0.1 = 7 - 2.373 + 0.5 = 5.127$$

$$K_h = \frac{K_W}{K_b} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.556 \times 10^{-10}$$

Ex: Calculate the pH of 0.1M AgNO₃ solution in water if pKb of AgOH =3.96?

AgOH + HNO₃
$$\rightarrow$$
 AgNO₃ + H₂O
pH = $\frac{1}{2}$ (pK_w - pK_b - logC_s)
= $\frac{1}{2}$ (14-3.96 - log 0.1) = 5.52

(or)
$$[H^+] = \sqrt{\frac{Kw .Cs}{Kb}}$$

$$=\sqrt{\frac{10^{-14\times10^{-1}}}{10^{-3.96}}}$$

$$=\sqrt{10^{-11.04}} = 10^{-5.52}$$
, $pH = 5.52$

4- Solutions of salts derived of weak acid and weak base

4- محاليل الاملاح المشتقة من حامض ضعيف وقاعدة ضعيفة

Acidity:

a. If the dissociation or ionization constants of the weak acid and base forming the salt are different the solution will be characterized by the stronger one.

اذا كانت قيمة ثابت التفكك للحامض الضعيف تختلف عنها للقاعدة فالمحلول يتصف بإقواها.

$$NH_4OH + H_2CO_3 \rightarrow (NH_4)_2CO_3 + H_2O$$

Weak base weak acid salt water

Since NH₄OH is stronger than H₂CO₃ the solution is alkaline بما ان هيدر وكسيد الامونيوم اقوى من حامض الكاربونيك فأن المحلول قاعدى

$$Pb(OH)_2 + CH_3COOH \rightarrow (CH_3COO) Pb + H_2O$$

Weak base weak acid salt water

Since CH₃COOH is stronger than the solution is acidic.

b. If the dissociation or ionization constants of the weak acid and base forming the salt are the same, than the situation depend on which ion will be in more H⁺ or OH⁻.

c. اذا كانت قيمة ثابت التفكك متساوية للحامض الضعيف وللقاعدة الضعيفة فأن الحالة تعتمد على اي الايونين (الهيدروجين والهيدروكسيد) ذو تركيز أعلى .

If Ka > Kb then the solution is acidic.

If Kb > Ka then the solution is alkaline.

If Ka > Kb then the solution is neutral.

Hydrolysis constant of the salt:

ثابت التحلل للملح في الماء (لملح متكون من حامض ضعيف وقاعدة ضعيفة)

$$CH_3COO^- + NH_4^+ + H_2O \longrightarrow CH_3COOH + NH_4OH$$

$$K_h = \frac{[CH_3 COOH][NH_4OH]}{[CH_3 COOH][NH_4^+]} ------(1)$$

$$K_a = \frac{[CH_3 COO^-][H^+]}{[CH_3 COOH]}$$
 -----(2)

$$NH_4OH \longrightarrow NH_4^+ + OH^-$$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]} \qquad ----- (3)$$

$$H_2O \longrightarrow H^+ + OH^-$$

$$Kw = [H^+][OH^-]$$
 ------ (4)

$$\frac{K_w}{K_a. K_b} = \frac{[CH_3 COOH][NH_4 OH]}{[CH_3 COO^-][NH_4^+]} = K_h$$

$$K_h = \frac{K_w}{K_a.K_b}$$

Calculation of pH value

حساب الدالة الحامضية لملح مشتق من حامض ضعيف وقاعدة ضعيفة

pH value here do not depend on the concentration of salt, for ammonium acetate salt.

مثلا لملح خلات الامونيوم ، لا تعتمد قيمة الدالة الحامضية هنا على تركيز الملح

$$K_a = \frac{[CH_3 COO^-][H^+]}{[CH_3 COOH]}$$
 , $[H^+] = K_a \frac{[CH_3 COOH]}{[CH_3 COO^-]}$

Acid concentration = $\frac{x}{v}$ (ترکیز الحامض)

, The concentration of un hydrolyzed salt $=\frac{1-x}{v}$ (ترکیز الملح الغیر متحلل)

$$[H^+] = \frac{Ka\left(\frac{x}{v}\right)}{\frac{1-x}{v}} \qquad , \qquad [H^+] = \frac{Ka.x}{1-x}$$

From pervious law

$$K_h = \left(\frac{x}{1-x}\right)^2$$
 , Since $\sqrt{K_h} = \frac{x}{1-x}$ therefore

$$[H^+] = Ka.\sqrt{K_h} \quad \text{, Since} \quad \mathsf{Kh} = \frac{Kw}{Ka.Kb}$$

$$[H^+] = Ka\sqrt{\frac{Kw}{Ka.Kb}}$$

Therefore:-

By taking the -logarithm

$$-\log[H^{+}] = -\log Ka - \frac{1}{2}\log Kw + \frac{1}{2}\log Ka + \frac{1}{2}\log Kb$$

$$-\log[H^{+}] = -\frac{1}{2}\log Ka - \frac{1}{2}\log Kw + \frac{1}{2}\log Kb$$

$$pH = \frac{1}{2} pKw + \frac{1}{2} pKa - \frac{1}{2} pKb$$

Ex: Calculate pH and Kh of 0.05N solution of ammonium format (HCOONH₄) at 25°C, if Ka of formic acid is 1.8 ×10⁻⁴ and Kb of ammonium hydroxide is 1.8×10⁻⁵?

Sol) Ammonium format is salt derived from weak acid and weak base فور مات الامونيوم هي ملح مشتق من حامض ضعيف هو حامض الفور ميك وقاعدة ضعيفة هيدروكسيد الامونيوم.

$$pH = \frac{1}{2} (pK_w + pKa - pK_b)$$
$$= \frac{1}{2} (14 + 3.745 - 4.745)$$
$$= 6.5$$

$$Kh = \frac{Kw}{Ka.Kb} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-4} \times 1.8 \times 10^{-5}} = 3.086 \times 10^{-6}$$

Ex: Calculate pH and Kh values for 0.1M ammonium acetate solution, if $Ka=1.8\times10^{-5}$ and $Kb=1.8\times10^{-5}$?

Since the salt is derived from weak acid and base and Ka=Kb then the solution is neutral.

بما ان ملح خلات الامونيوم مشتق من حامض ضعيف هو حامض الخليك وقاعدة ضعيفة هي هيدر وكسيد الامونيوم وبما ان قيمة ثابت تفكك الحامض تساوي قيمة ثابت تفكك القاعدة فأن المحلول يكون متعادل .

$$pH = \frac{1}{2} (pK_w + pKa - pK_b)$$

$$= \frac{1}{2} (14 + 4.745 - 4.745)$$

$$= 7$$