Principles of Ecology BSc. Course 2024 – 2025 Lecture – 6

Dr. Adel H. Talib & Dr. Israa Mohsin Jasim adelht_bio@csw.uobaghdad.edu.iq

Department of Biology College of Science for Women University of Baghdad

The species and Individuals in the Ecosystem.

Habitat and Ecological Niche Character Displacement Biological Clock

A Community

is an assemblage of plant and animal populations that live in a particular area or habitat.

• Populations of the various species in a community interact and form a system with its own emergent properties.

Community Ecology

Explain the underlying mechanisms that create, maintain, and determine the fate of biological communities.

Biodiversity

The total number of different species in an ecosystem and their relative abundance

Species Richness

- The number of species in a community.
- Clearly, the number of species we can observe is function of the area of the sample.
- It also is a function of method of measuring.
- Thus, species richness is sensitive to sampling procedure.

Population

A group of organism of the same species which live in the same habitat at the same time where they can freely interbreed.

Diversity is the number of species in the community, and their relative abundances.

- Species are not equally abundant, some species occur in large percentage of samples, others are poorly represented.
- Some communities, such as tropical rainforests, are much more diverse than others, such as the great basin desert.
- Species Diversity is often expressed using Simpson's diversity index: $D=1-S (p_i)^2$
- **Example Problem** : A community contains the following species:
- Number of Individuals
- Species A 104
- Species B 71
- Species C 19
- Species D 5
- Species E 3
- What is the Simpson index value for this community?

• **Answer:** Total Individuals= (104+19+71+5+3)=202

- $P_A = 104 / 202 = 0.51$ $P_B = 19 / 202 = 0.09$
- $P_C = 71 / 202 = 0.35$ $P_D = 5 / 202 = 0.03$ $P_E = 3 / 202 = 0.02$
- **D**= 1 { $(.51)^2 + (.09)^2 + (.35)^2 + (.03)^2 + (.02)^2$ }
- **D**= 1 0.4 = 0.6

• Clicker Question?

In the example above, what was the species richness?

- **A.** 0.6
- **B.** 202 individuals
- C. 5 species
- **D.** 0.4
- **E.** None of the above

Habitat

The characteristics of the type of environment where an organism normally lives.

(e.g. a Stoney stream, a deciduous temperate woodland, Desert, River Banks, Wetlands)

- The **niche** concept is very important in community ecology.
- A **niche** is an organism's habitat and its role in the ecosystem and its requirements for living.

Habitat + Role + requirement

Keystone species act to maintain species diversity.

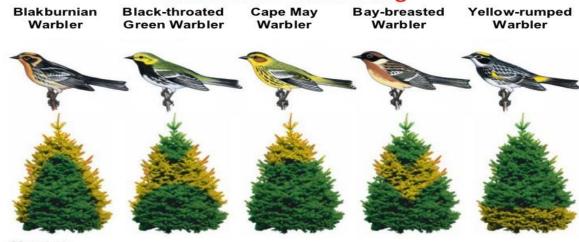
- The extinction of a keystone species eliminates the niches of many other species.
- Frequently, a keystone species modifies the environment in such a way that other organisms are able to live, in other cases, the keystone species is a predator that maintains diversity at a certain trophic level.

• Examples of Keystone Species

• California Sea Otters: This species preys upon sea urchins, allowing kelp forests to become established.

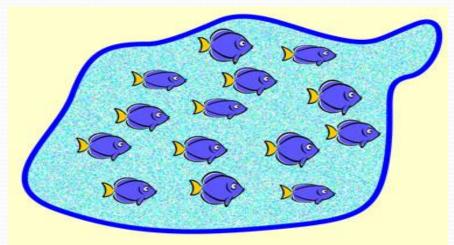
• Examples of Keystone Species

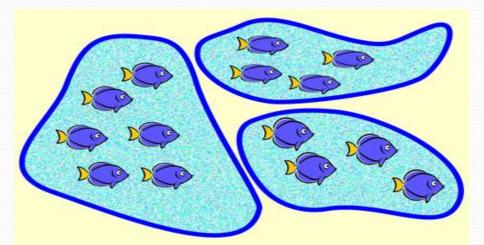
• **Pisaster Starfish:** Grazing by Pisaster prevents the establishment of dense mussel beds, allowing other species to colonize rocks on the pacific coast


Examples of Keystone Species

• "Mangrove" trees: Their seeds disperse in salt water. They root and form a dense forest in saltwater shallows, allowing other species to thrive.

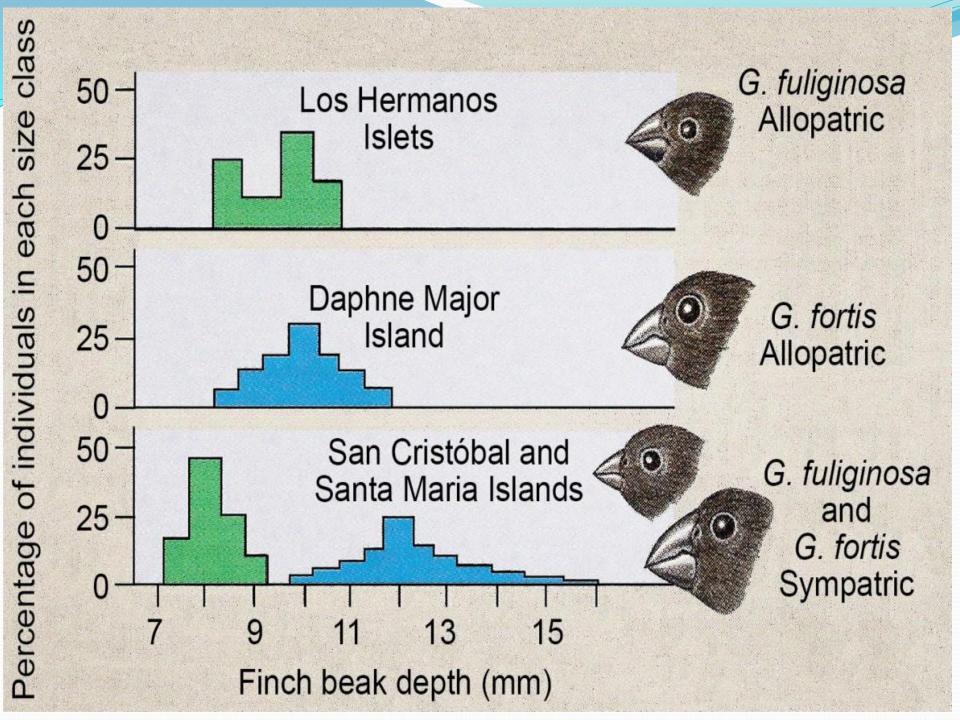
Resource Partitioning Species that share the same habitat and have similar needs frequently


- Species that share the same habitat and have similar needs frequently use resources in somewhat different ways - so that they do not come into direct competition for at least part of the limiting resource.
- This is called **resource partitioning**.
- **Resource partitioning** allow the coexistence of several species using the same limiting resource.
- **Resource partitioning** could be an evolutionary response to interspecific competition. Resource Partitioning

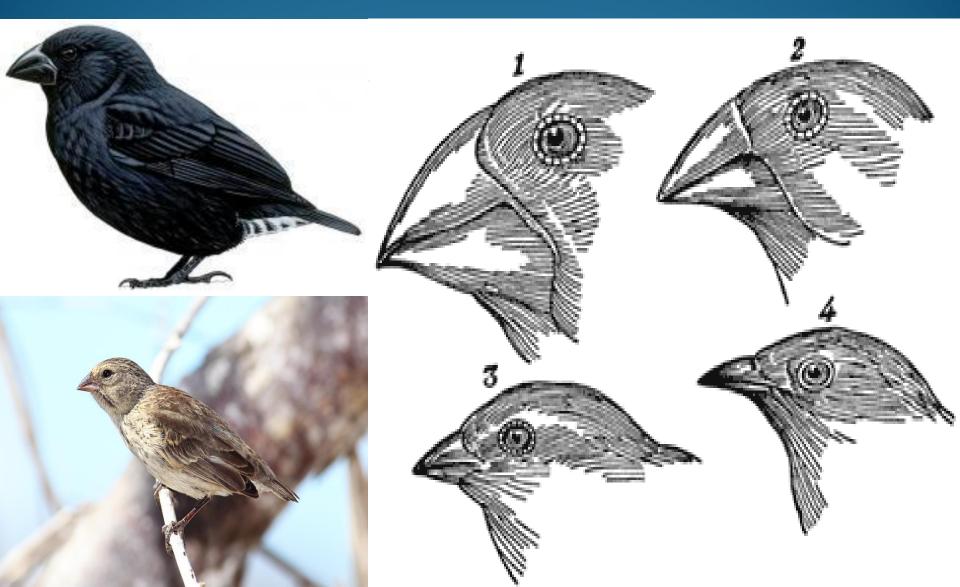

@ Cengage Learning

Character Displacement Sympatric populations of similar species frequently have differences in body structure relative to **Allopatric** populations of the same species.

• Character displacement is thought to be an evolutionary response to **interspecific competition**.

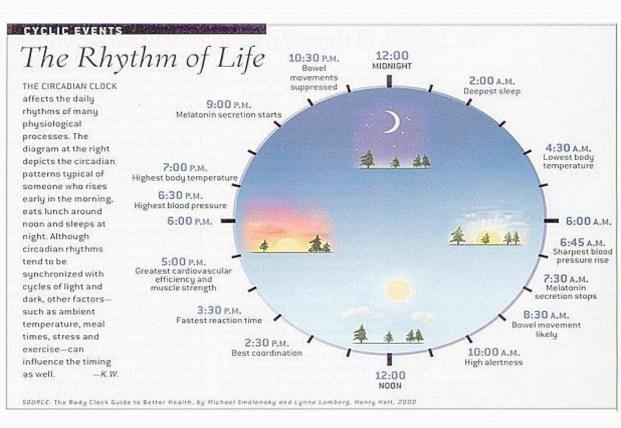


Sympatry: Many varieties in one range Become species through adaptation to different aspects of the range



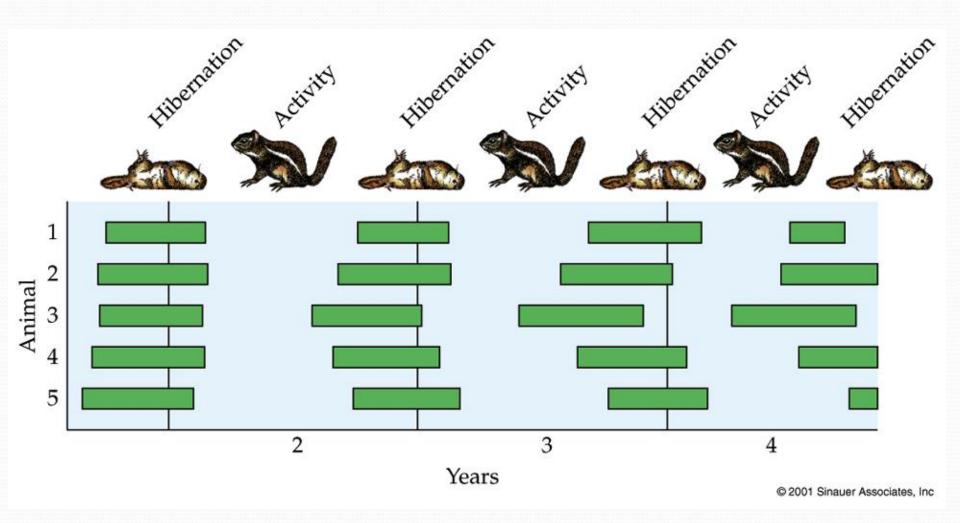
Allopatry: Each variety in its own range Become species due to drift and local adaptation **Example of Character Displacement** The best known case of character displacement occurs between the finches, *Geospiza fuliginosa* and *Geospiza fortis*, on the Galapagos islands.

- When the two species occur together, *G. fuliginosa* has a much narrower beak that *G fortis*.
- Sympatric populations of *G fuliginosa* eats smaller seeds than *G fortis*: they partition the resource.
- When found on separate islands, both species have beaks of intermediate size, and exploit a wider variety of seeds.
- These inter-population differences might have evolved in response to interspecific competition.


Example of Character Displacement

Biological clocks

Clock periods


- Circannual
- Circalunidian
- Circadian
- Clock mechanisms
 - Entrainment
 - Neural location
 - Genetic basis

Biological clocks

Hibernation follows annual rhythm in golden-mantled ground squirrels

Five animals were isolated at birth and kept in darkness at 3°C

Horseshoe crabs mate on full moon, why?

