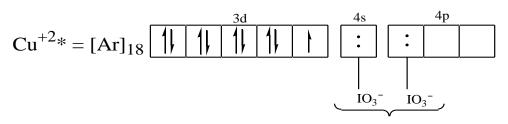
التجربة الرابعة

تحضير المعقد المتعادل Cu(IO₃)₂

Diiodatocupper(II)

ثنائي ايوديتونحاس (١١)

الجزء النظرى:


(IO₃) ليكند احادي السن له الصيغة الجزيئية التالية:

$$Cu(NO_3)_2.3H_2O + 2KIO_3 \longrightarrow Cu(IO_3)_2 + 2KNO_3 + 3H_2O$$

$$_{29}$$
Cu = [Ar]₁₈ 3d¹⁰ 4s¹

$$Cu^{+2} = [Ar]_{18}$$
 $3d^9$ $4s^0$

sp التهجين:

بارامغناطيسي الصفة المغناطيسية:

الشكل الهندسي: مستقيم

 $O_3I \longrightarrow Cu \longleftarrow IO_3$

نوع التفاعل: تفاعل استبدال

المناقشة:

 $^{\circ}$ ا کتب الحالات الرنینیة لـ $^{\circ}$ ا ا

س٢: ماالفرق بين مصطلح ايوديت وايوديتو ؟

س٣: قارن بين Cu(IO3)2 و KIO3 من ناحية التسمية ، نوع الاصرة الرابطة ، الاذابة بالماء ، قابلية التوصيل الكهربائي ؟