3.2.1 Potential Difficulties When Applying the Gauss Elimination Method

The pivot element is zero

Since the pivot row is divided by the pivot element, a problem will arise during the execution of the
Gauss elimination procedure if the value of the pivot element is equal to zero. As shown in the next section,
this situation can be corrected by changing the order of the rows. In a procedure called pivoting, the pivot
row that has the zero pivot element is exchanged with another row that has a nonzero pivot element.
The pivot element is small relative to the other terms in the pivot row

Significant errors due to rounding can occur when the pivot element is small relative to other
elements in the pivot row. This is illustrated by the following example.
Consider the following system of simultaneous equations for the unknowns x; and x:

0.0003x; + 12.34x> = 12.343
0.4321 x; + x2 = 5.321
(3.8)
The exact solution of the system is x; = 10 and x2 = . The error due to rounding is illustrated by solving the
system using Gaussian elimination on a machine with limited precision so that only four significant figures
are retained with rounding. When the first equation of Eqgs, (3.8) is entered, the constant on the right-hand
side is rounded to 12.34.
The solution starts by using the first equation as the pivot equation and a;,;= 0.0003 as the pivot coefficient.
In the first step, the pivot equation is multiplied by m;= 0.4321/0.0003 = 1440. With four significant figures
and rounding, this operation gives:
(1440)(0.0003x; + 12.34x;) = 1440 ( 12.34)
or:
0.4320x; + 17770x; = 17770

The result is next subtracted from the second equation in Egs. (3.8):
0.4321x, +x, = 5321

0.4320x, + 17770x, = 17770
0.0001x, - 17770x, = ~17760

After this operation, the system is:

0.0003x; + 12.34x; = 12.34

0.0001x; - 17770x; = -17760
Note that the az; element is not zero but a very small number. Next, the value of x; is calculated from the
second equation:

-17760
Xy = m = 0.9994
Then x; is substituted in the first equation, which is solved for x;:
12.34 — 12.34(0.9994) 0.01 33.33
A= 0.0003 ~0.0003 7

The solution that is obtained for x; is obviously incorrect. The incorrect value is obtained because the
magnitude of all is small when compared to the magnitude of a;>. Consequently, a relatively small error (due
to round-off arising from the finite precision of a computing machine) in the value of x; can lead to a large
error in the value of x;. The problem can be easily remedied by exchanging the order of the two equations in
Eqgs. (3.8):

0.4321 x; +x;= 5.321
0.0003x; + 12.34x; = 12.343
(3.9)



Now, as the first equation is used as the pivot equation, the pivot coefficient is ay= 0.4321. In the first step,
the pivot equation is multiplied by my, = 0.0003/0.4321 = 0.0006943. With four significant figures and
rounding this operation gives:
(0.0006943)(0.4321x; + x2) = 0.0006943 (5.321)
or:
0.0003x; + 0.0006943x; = 0.003694
The result is next subtracted from the second equation in Egs. (3.9):
0.0003x, + 12.34x, = 12.34

0.0003x, +0.0006943x, = 0003694
12.34x, = 12.34

After this operation, the system is:
0.4321x; + x; = 5.321
Oxl + 12.34x; = 12.34

Next, the value of x; is calculated from the second equation:
12.34

12.34

Then x; is substituted in the first equation that is solved for x;:
_5321-1 10

= T04321

The solution that is obtained now is the exact solution.

In general, a more accurate solution is obtained when the equations are arranged (and rearranged every time

a new pivot equation is used) such that the pivot equation has the largest possible pivot element. This is

explained in more detail in the next section.

Round-off errors can also be significant when solving large systems of equations even when all the

coefficients in the pivot row are of the same order of magnitude. This can be caused by a large number of

operations (multiplication, division, addition, and subtraction) associated with large systems.

X2 =

3.3 GAUSS ELIMINATION WITH PIVOTING

In the Gauss elimination procedure, the pivot equation is divided by the pivot coefficient. This,
however, cannot be done if the pivot coefficient is zero. For example, for the following system of three
equations:

Ox; + 2x2 + 3x3 =46

dx;-3x:+ 2x3 =16

2x;+ dx3-3x3=12
the procedure starts by taking the first equation as the pivot equation and the coefficient of x;, which is 0, as
the pivot coefficient. To eliminate the term 4x; in the second equation, the pivot equation is supposed to be
multiplied by 4/0 and then subtracted from the second equation. Obviously, this is not possible when the
pivot element is equal to zero. The division by zero can be avoided if the order in which the equations are
written is changed such that in the first equation the first coefficient is not zero. For example, in the system
above, this can be done by exchanging the first two equations.

In the general Gauss elimination procedure, an equation (or a row) can be used as the pivot equation
(pivot row) only if the pivot coefficient (pivot element) is not zero. If the pivot element is zero, the equation
(i.e., the row) is exchanged with one of the equations (rows) that are below, which has a nonzero pivot
coefficient. This exchange of rows, illustrated in Fig. 3-12, is called pivoting.



After the first step, the second

equation has a pivot element that
is equal to zero.
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Using pivoting, the second
equation is exchanged with
the third equation.
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Figure 3-12: Iustration of pivoting.

Additional comments about pivoting

« If during the Gauss elimination procedure a pivot equation has a pivot element that is equal to zero, then if
the system of equations that are being solved has a solution, an equation with a nonzero element in the pivot
position can always be found.

* The numerical calculations are less prone to error and will have fewer round-off errors if the pivot element
has a larger numerical absolute value compared to the other elements in the same row. Consequently, among
all the equations that can be exchanged to be the pivot equation, it is better to select the equation whose pivot
element has the largest absolute numerical value. Moreover, it is good to employ pivoting for the purpose of
having a pivot equation with the pivot element that has the largest absolute numerical value at all times
(even when pivoting is not necessary).

3.4 LU DECOMPOSITION METHOD

Background

The Gauss elimination method consists of two parts. The first part is the elimination procedure in
which a system of linear equations that is given in a general form, [a][x] = [b], is transformed into an
equivalent system of equations [a'][x] = [b'] in which the matrix of coefficients [a'] is upper triangular. In the
second part, the equivalent system is solved by using back substitution. The elimination procedure requires
many mathematical operations and significantly more computing time than the back substitution
calculations. During the elimination procedure, the matrix of coefficients [a] and the vector [b] are both
changed. This means that if there is a need to solve systems of equations that have the same left-hand-side
terms (same coefficient matrix [a]) but different right-hand-side constants (different vectors [ b] ), the
elimination procedure has to be carried out for each [ b] again. Ideally, it would be better if the operations on
the matrix of coefficients [a] were dissociated from those on the vector of constants [ b] . In this way, the
elimination procedure with [a] is done only once and then is used for solving systems of equations with
different vectors [ b] .



One option for solving various systems of equations [a][x] = [b] that have the same coefficient
matrices [a] but different constant vectors [ b] is to first calculate the inverse of the matrix [a] . Once the
inverse matrix [¢] "' is known, the solution can be calculated by: [x] = [a]” [b] .

Calculating the inverse of a matrix, however, requires many mathematical operations, and is
computationally inefficient. A more efficient method of solution for this case is the LU decomposition
method. In the LU decomposition method, the operations with the matrix [a] are done without using or
changing, the vector [ b], which is used only in the substitution part of the solution. The LU decomposition
method can be used for solving a single system of linear equations, but it is especially advantageous for
solving systems that have the same coefficient matrices [a] but different constant vectors [ b].

The LU decomposition method

The LU decomposition method is a method for solving a system of linear equations [a] [ x] = [ b] .
In this method the matrix of coefficients [a/ is decomposed (factored) into a product of two matrices (L] and
[U]:

[a] = [L][U] (3.10)
where the matrix [L] is a lower triangular matrix and [U] is an upper triangular matrix. With this
decomposition, the system of equations to be solved has the form:

[L][U][x] = [b] (3.11)
To solve this equation, the product [U][x] is defined as:

[Ullx] = [y] (3.12)
and is substituted in Eq. (3.11) to give:

[L][y] = [b] (3.13)

Now, the solution [x] is obtained in two steps. First, Eq. (3.13) is solved for [y]. Then, the solution [y] is
substituted in Eq. (3.12), and that equation is solved for /x]. Since the matrix [ L] is a lower triangular
matrix, the solution [y/ in Eq. ( 3.13) is obtained by using the forward substitution method. Once [y] is
known and is substituted in Eq. (3.12), this equation is solved by using back substitution, since [ U] is an
upper triangular matrix. For a given matrix [a] several methods can be used to determine the corresponding
[L] and [U]. One of them is related to the Gauss elimination method are described next.

3.4.1 LU Decomposition Using the Gauss Elimination Procedure

When the Gauss elimination procedure is applied to a matrix [a/, the elements of the matrices [ L]
and [U] are actually calculated. The upper triangular matrix /U] is the matrix of coefficients [a] that is
obtained at the end of the procedure, as shown in Figs. 3-4 and 3- 11. The lower triangular matrix [L] is not
written explicitly during the procedure, but the elements that make up the matrix are actually calculated
along the way. The elements of [L] on the diagonal are all 1, and the elements below the diagonal are the
multipliers m;; that multiply the pivot equation when it is used to eliminate the elements below the pivot
coefficient. For the case of a system of four equations, the matrix of coefficients [a] is ( 4 x 4), and the
decomposition has the fonln:

- = =
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A numerical example illustrating LU decomposition is given next. It uses the information in the solution of
Example 3- 1, where a system of four equations is solved by using the Gauss elimination method. The
matrix [a] can be written from the given set of equations in the problem statement, and the matrix (U] can
be written from the set of equations at the end of step 3 (page 35). The matrix [ L] can be written by using
the multipliers that are calculated in the solution. The decomposition has the form:



4 -2 -3 6 1 0 0 0||4-2-3 6

6 7 65 -6/ =|-151 0 0[/0 4 2 3

1 7562555 (0252 1 0fj0 0 3 -2

12 22 155 -1 -3 4-051/00 0 4
3.5 ITERATIVE METHODS

A system of linear equations can also be solved by using an iterative approach. The process, in
principle, is the same as in the fixed-point iteration method used for solving a single nonlinear equation. In
an iterative process for solving a system of equations, the equations are written in an explicit form in which
each unknown is written in terms of the other unknown. The explicit form for a system of four equations is
illustrated in Fig. 3-13.

@y Xy +apxy +apx, +ax, = = [by ~(apx; +ayx; +ayexy)l/ay,

[
5
L

Writing the equations

@y Xy + apxy + ayxy +ayx, = by . Ticit fi Xy = [by —(ayyx) +ayyxy +ayxy)]/ay
= in an explicit form.
ay Xy + aypXy + ayyxy + ayXy = by xp Xy = [by ~(ay,x, +ayxy + ayyx,)1/ ayy
X +a + X + = b ﬁ
Aa1 %) T Qg% F Qg3Xy T QeeXy = Oy Xy = [by—(Gyy %) + Xy + A X))/ Gy
(a) (b)

Figure 3-13: Standard (a) and explicit (b) forms of a system of four equations.

The solution process starts by assuming initial values for the unknowns (first estimated solution). In the first
iteration, the first assumed solution is substituted on the right-hand side of the equations, and the new values
that are calculated for the unknowns are the second estimated solution. In the second iteration, the second
solution is substituted back in the equations to give new values for the unknowns, which are the third
estimated solution. The iterations continue in the same manner, and when the method does work, the
solutions that are obtained as successive iterations converge toward the actual solution. For a system with n
equations, the explicit equations for the [x;/ unknowns are:

1 f= .
xXp = a_“(bi - f;:L-,:i a;j%;),i=12,..,n B4

Condition for convergence
For a system of n equations [a][x] = [b], a sufficient condition for convergence is that in each row of
the matrix of coefficients [a] the absolute value of the diagonal element is greater than the sum of the

absolute values of the off-diagonal elements.

|l > o syl @] (3.15)

This condition is sufficient but not necessary for convergence when the iteration method is used. When the
condition ( 3.15) is satisfied, the matrix [a] is classified as diagonally dominant, and the iteration process
converges toward the solution. The solution, however, might converge even when Eq. ( 3.15) is not satisfied.
Two specific iterative methods for executing the iterations, the Jacobi and Gauss-Seidel methods, are
presented next. The difference between the two methods is in the way that the new calculated values of the
unknowns are used.

3. 5. 1 Jacobi Iterative Method
L @) letill_ It

In the Jacobi method, an initial (first) value is assumed for each of the unknowns Xy, ka gies

no information is available regarding the approximate values of the unknown, the initial value of all the

@ 2@ @

unknowns can be assumed to be zero. The second estimate of the solution x 5 s Xy 18 calculated by

substituting the first estimate in the right-hand side ofEqgs. (3.14):



j=n

1
xP=—|bi= ) | i=12,.n
Qi

j=1,j#i
In general, the ( k + 1) th estimate of the solution is calculated from the ( k) th estimate by:

f=n

1
xfkﬂ] =—| b; = Z a”xfk} i=12,..,n
a..
il -l
j=1,j=i

The iterations continue until the differences between the values that are obtained in successive iterations are
small. The iterations can be stopped when the absolute value of the estimated relative error of all the
unknowns is smaller than some predetermined value:

k
xé[k+1) - x:'( )

(k)
X

Example 3.3 Solve the following equations by Jacobi’s method.
15x+3y—2z=85
2x+ 10y + z =51
x—2y+8z2=5

<€,;i=12,.,1

Solution In the above equations:
[15] > 3] + |-2|
110} > 2] + 1]
18] > [1] + |-2|
then Jacobi’s method is applicable. We rewrite the given equations as follows:

1 1
x=—(dy-by—-qz) =—(B85-3y+22)
dl 15

y= b%_(dz —a)x—cyz) =%(51_3-"_-—)
1 1

z=—(dy—azx—by) =—(5-x+2))
c3 8

Let the initial approximations be:
A=y0=2"=0
Iteration 1:




Iteration 2:

1 1( 51 5]
=—(d; - By 7)) = —| 85-3x =~ (-2) x>
X a1(1 hy —azn) 15[. T ( )XS

=4.73

1 1/ 7
¥37 =—(a'3-a1.r1 —-‘.":.'."l) =—‘[51—2X1——1X2]
by 10 3 &
y5] = 3.904
1 1 17 31
zy =—(d3 —a3x; —by) =—(5—1)<—— = x—]
2 05(3 3% — &) sl - (-2) o

= 1.192

Iteration 3:
= 11—5(35 ~3x3.904+2x1.192) = 5.045
=%(51—2x4.73-1xl,192) = 4.035
= 5(5-1x4.173+2x3.904) = 1.010
Iteration 4:
=%(85 —3x4.035+2x1.010) = 4.994
=%(51—2x5_045—1x1_010)= 3.99

=%(5—1x5.045+2x4.035)= 1.003

Iteration 5:

i é(ss ~3x3.99 +2 x1.003) = 5.002

- -
>

= %(51 -2x4994-1x1.003) =4.001

l

— 1
z5|= -8—(5—-1x4.994+2x3.99) =0.998



Iteration 6:

e] = —— (85— 3% 4.001+ 2% 0.998) = 5.0
=617 15

Ve|= %(51 -2x5.002-1x0.998)=4.0

26 =%(5-1xslooz+2x4A001)=1_o

Iteration 7:

E:l—ls(ss—3x4+2x1)=50

— 1
y7|l=—(1-2x5-1x1)=4.0
7 10( )

;=%(5-1x5+2x4)=1.0

Example 3.4:Use the Jacobi iterative scheme to obtain the solutions of the system of equations correct to
three decimal places.
x+2v+2z=0
Ix+y—z=
x-y+4z=3
Solution
Rearrange the equations in such a way that all the diagonal terms are dominant.
Ix+y—-z=0
x+2y+2z=0
x—y+4dz=3
Computing for x, y and z we get:
x=(z-y)3
y=(=x-2)2
z=@3+y-x)/4
The iterative equation can be written as: ‘
XD = (200 — yh/3
Yl = (x0) - Z0)/2
2D = (3 - x + _p(ﬂ)m
The initial vector is not specified in the problc?[}}. Heg&:e w{g}choose
P =yt =gtlia 1
Then, the first iteration gives:
X =0 —y0y3 =(1-1)3=0
W = (=@ - 02 =(-1-1)2=-1.0
D=3-x0+y0)/4=3-1+1)/4=0.750

similarly, second iteration yields:



X = (0 —yMy3 = (0.75+ 1.0/3 =0.5833
YD = (=) = z0)/2 = (<0-0.75)2=-0.3750

Subsequent iterations result in the following:

x®=0.29167 Y=- 034165 zZ9=0.51042
x9=0.32986 Y9=-040104 29=0.57862
X9 =0.32595 Y9=-0.45334 z9=0.56728
x®=0.34021 V9=-0.44662 Z9=0.55329
xM=0.3333 VN =-0.44675 z1=0.55498
x®=0.33391 Y9=-044414 z®=0.55498
x®=0.33304 V¥ =-0.44445 z®=0.5555

so to three decimal places the approximate solution:
x=0.333 y=-0.444 z = 0.555

3. 5. 2 Gauss-Seidel Iterative Method

In the Gauss-Seidel method, initial (first) values are assumed for the unknowns xs, x3 ..., x, (all of the
unknowns except x;). If no information is available regarding the approximate value of the unknowns, the
initial value of all the unknowns can be assumed to be zero. The first assumed values of the unknowns are
substituted in Eq. (3.14) with i = I to calculate the value of x;. Next, Eq. (3.14) with i = 2 is used for
calculating a new value for x2. This is followed by using Eq. (3.14) with i = 3 for calculating a new value for
x3. The process continues until i = n, which is the end of the first iteration. Then, the second iteration starts
with i = [ where a new value for x; is calculated, and so on. In the Gauss-Seidel method, the current values
of the unknowns are used for calculating the new value of the next unknown. In other words, as a new value
of an unknown is calculated, it is immediately used for the next application of Eq. (3.14). (In the Jacobi
method, the values of the unknowns obtained in one iteration are used as a complete set for calculating the
new values of the unknowns in the next iteration. The values of the unknowns are not updated in the middle
of the iteration.) Applying Eq. (3.14) to the Gauss-Seidel method gives the iteration formula:

(k+1) _ 1 j=n (k)
X = a_u(bi = Lj=1,jzi 1% )
(k+1) _ 1 j=i-1 (k+1) j=n )Y\ : _
X; _a_“(bf_zj=‘l aijxj —Zj=i+1ai,~x}- ),1—2,...,?1.—1 (316)
(k+1) _ 1 j=n—1 (le+1)
1 = 2 (b - ZIE )
Example 3.5: Solve the following equations by Gauss-Seidal method.
8x+2y—-2z=8
x—-8y+3z=-4
2x+y+9z=12
Solution
In the above equations:
8] > 2] + | -2
|-8] > 1] + |3]
191> 2 + 1]

So, the conditions of convergence are satisfied and we can apply Gauss-Seidal method. Then we rewrite the
given equations as follows:



1
x = —(d —by® —1z%)
q

M= é(dl —axx -C;h'.'o)

1
2y =—(d3 —a3xy —b3»)
€3

Let the initial approximations be:

Iteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

N0=y0=20=0

[n]= LYY A =_L8(—4—1x1.0) =0.625

(d; —a3x; —byy) =—(12-2) = 2x1.0-1x0.625) = 1.042

el
O | =

=L(d1—-blyl*fﬁ):%(s~2x0.625*(-2)x1.042)= 1.104
a
=;1\~(d2—a2x2 —czrx)=La{—4—lxl.104—3><1.042)=l.029

= i(d; —ayx; —byyy) = -;-(12 -2x1.104-1x1.029) = 0974
€3

=1 =%~(s -2x1.029—(-2)x0.974) = 0.986
a
1 1

=Z(d3 —ayx3—y7)) = (~4-1x0.986-30.974) = 0.989

=i(d3 —azx; —byys) = %(12— 2% 0.986—1x0.989) = 1.004
€

= %cs—z % 0.989 — (=2) x1.004) = 1.004
=i8(4—1x1_904—3x1_904) =1.002

1
[24]= 5(12-21.004 ~1x1.002) = 0999



E] = %(8 =2x1.002-(=2)%0.999) = 0.999

1
EI=-§(—4-1><0.999*3><0.999) =1.0

E[=%(12-2><0.999-1x1.0)=I.0

Iteration 6:

x4] =%(E—2xl+2x1)=

Ve =Ls(—4—lxl.0—3xl‘0)=

z6|= %(12—2x1,0—1x1.0)=

Example 3.6: Using the Gauss-Seidal method solve the system of equations correct to three decimal places.
x+2y+z=0
3x+y—-z=
X—y+4z=3
Solution
Rearranging the given equations to give dominant diagonal elements, we obtain
Ix+y-z=0
x+2y+z=0
x-y+4z=3 (E.l)
Equation (E.1) can be rewritten as
x=(z-y)3
y=—(x+2)/2
z=@B3+x+y)4 (E.2)
Writing Eq.(E.2) in the form of Gauss-Seidal iterative scheme, we get:
xr*) = (z0 _y(r));_:,
yr*) = (xr+D - z0%)/2
zr+l) = 3- xr=l +y(r+l))[4
We start with the initial value
x(0) = y(0) = 2(0) = 1
The iteration scheme gives:

XD=CO0—-y0y3 =(1-1)3=0
Y = (=D - z0)2 = (0-1)2=-05
2 =3 -xM +)Wy4 =(3-0-05)4=0625

The second iteration gives:
X = (20 —yMy3 = (0.625 +0.5)/3 =0.375
YD = (=D - z20)/2 = (- 0.375-0.625)/2=-0.50
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Subsequent iterations result in:

x®=0.34375 W)=—0.4375 79=0.55469
x9=0.33075 V9=—0.44271 z9=0.55664
x¥=033312 W9=-0.44488 29=0.5555

X9=0.33346 V9 =—0.44448 29=0.55552

Hence, the approximate solution is as follows:
x=10.333, y =-0.444, z = 0.555

3.6 USE OF MATLAB Built IN FUNCTIONS FOR SOLVING A SYSTEM
OF LINEAR EQUATIONS

MATLAB has mathematical operations and built-in functions that can be used for solving a system
of linear equations and for carrying out other matrix operations that are described in this chapter.
3.6.1 Solving a System of Equations Using MATLAB's Left and Right Division
Left division \ : Left division can be used to solve a system of n equations written in matrix form
[a][x]=[b], where [a] is the (n X n ) matrix of coefficients, [x] is an ( n x /) column vector of the unknowns,
and [ b] 1s an (n x /) column vector of constants.

x=a\b

For example, the solution of the system of equations in Example 3-1 is calculated by (Command Window):

>> a=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1};
>>» b=[12; -6.5; 16; 17]:
>> x=a\b
X =
2.0000
4.0000
-3.0000
0.5000

Right division / : Right division is used to solve a system of n equations written in matrix form [x/[a] = [b],
where [a] is the (n X n ) matrix of coefficients, [ xJis a( 1 x n ) row vector of the unknowns, and [ bJisa( /
X i) row vector of constants.

x=b/a

For example, the solution of the system of equations in Example 3-1 is calculated by (Command Window):

>> a=[4 -61 -12; -2 7 7.5 22; -3 6.5 6.25 15.5; 6 -6 5.5 -1];
>> b=[12 -6.5 16 17];
>> x=b/a
x =
2.0000 4.0000 -3.0000 0.5000

Notice that the matrix [a] used in the right division calculation is the transpose of the matrix used in the left
division calculation.




3.6.2 Solving a System of Equations Using MATLAB Inverse Operation

In MATLAB, the inverse of a matrix [a] can be calculated either by raising the matrix to the power
of -1 or by using the inv( @ ) function. Once the inverse is calculated, the solution is obtained by multiplying
the vector [ b] by the inverse. This is demonstrated for the solution of the system in Example 4-1.

> a=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1];
>> b=[12; -6.5; 16; 17];
>> x=a*-1*b [Themnwrmmhmahmkmdbywme >>X inﬂa?h}
x =

2.0000

4.0000

-3.0000

0.5000

3.7 Problems

I. Solve the following system of equations using the Gauss elimination method:
2x1 +x2-x3=1
X+ 20+ x3=8
X +X2-X3 = -5
2. Consider the following system of two linear equations:
0.0003x; + 1.566x; = 1.569
0.3454x; -2.436x; = 1.018
(a) Solve the system with the Gauss elimination method using rounding with four significant figures.
(b) Switch the order of the equations, and solve the system with the Gauss elimination method using
rounding with four significant figures.
Check the answers by substituting the solution back in the equations.
3. Solve the following set of simultaneous linear equations using the Jacobi’s method.
a. 2x—-y+5z=15
2x+y+z=17
x+3y+z=10
b. 20x+y-2z=17
3x+20y-z=-18
2x -3y +20z=25

C. Sx+2y+z=12
x+4y+2z=15
x+2y+5z=20
4. Solve the following system of simultaneous linear equations using the Gauss-Seidal method.
a. 4x-3y+5z=34
2x-y-2z=6
z+y+4z=15

b. 2x-y+5z=15
2x+y+z=17
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