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Machine Scheduling Problem 

Suppose that 𝑚 machines 𝑀𝑖 (𝑖 =  1, . . . , 𝑚) have to process 𝑛 jobs 𝑗 (𝑗 =  1, . . . , 𝑛). A 

schedule is for each job an allocation of one or more-time intervals to one or more machines. 

A schedule is feasible if at any time, there is at most one job on each machine; each job is run 

on at most one machine. A schedule is optimal if it minimizes (or maximizes) a given 

optimality criterion. A scheduling problem type can be specified using three- field 

classification  𝛼 / 𝛽 / 𝛾 composed of machine environment, the job characteristics, and the 

optimality criterion. 

Job Data  : Let 𝒏 denote the number of jobs. The following data is specified for each job 

𝒋 ( 𝒋 = 𝟏, 𝟐,… , 𝒏 ): 

 

𝑝𝑖𝑗 
A processing time of its 𝑖𝑡ℎ operation, 𝑖 = 1, 2, … ,𝑚𝑗 ,  where mjis the  number of 

operations on job j. If 𝑚𝑗 = 1, we shall write piinstead of 𝑝𝑖𝑗 

𝑟𝑗 A release date on which job 𝑗 become available for processing. 

𝑑𝑗 A due date, the time by which job 𝑗 ideally be completed. 

𝑑̅𝑗 A deadline, the time by which 𝑗 must be completed. 

𝑤𝑗 The weight of job 𝑗 representing the importance of job 𝑗 relative to another job.  

𝑓𝑗 
A non-decreasing real cost function measuring the cost  𝑓𝑗(𝑡) incurred if job 𝑗 

completed at time 𝑡. 

 

In general,  𝑝𝑖𝑗 , 𝑑𝑗 , 𝑟𝑗, 𝑑𝑗 and 𝑤𝑗 are given positive integer constants. 

The first field 𝛼: There are various possible cases of machines, all of which become available 

to process at time zero. There are four classes of machine environment.  

a. Single Machine Scheduling:  It can be defined as sequencing number of n jobs operating on 

a single machine.  

b. Parallel Machines Scheduling: Parallel machines scheduling involves scheduling a set of 

jobs on two or more machines that work in parallel with each other. In this type of problem, 

the jobs are assigned to either machine for processing, and the flow between machines is not 

allowed.                        

c. Flow Shop Scheduling: A flow shop scheduling consists of two or more machines and a set 

of jobs that must be processed on each of these machines. This arrangement is called a flow 

shop because the products flow along a specific unidirectional path. Each product must be 

processed on each machine in the same order e.g. 1st -machine 1, 2nd – machine 2,…, mth – 

machine m. The processing times for each job can vary from machine to machine and the 

processing times on each machine can vary from job to job. 

d. Job Shop Scheduling: A job shop consists of two or more than two machines that perform 
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specific operations, and a set of jobs that must be processed on some or all of these machines. 

Unlike the flow shop, there is no fixed path that the products must follow through the system 

therefore the order of operations is not fixed. This type of layout is typically used when the 

product variety is high and the product volume is low. 

The second field β is a list of the variables and the constraints indicates job characteristics: 

 

• 𝑟𝑗 a parameter defines that jobs have specified release dates, on which job j becomes 

available for processing. 

• 𝑑𝑗 a parameter indicates that jobs have specified due dates. This is a significant 

parameter of the job, because after which job j is consider late.  

• 𝒔𝒇 is used when jobs have specified sequence dependent setup times.  

•  If ptmn is present, then preemptions are allowed; the processing of any job may be 

interrupted at no cost and resumed at later time. 

• If a prec is present, then there is a precedence relation ≺ among the jobs, i.e., if 𝐽𝑗 ≺

𝐽𝑘 , then 𝐽𝑗 must be completed before 𝐽𝑘 can be started. 

• 𝑑𝑗 = 𝑑 indicates that all the due dates are identical. 

• 𝑃𝑗 = 𝑝 indicates that all the processing times are identical. 

Optimality Criteria 

The third field 𝜸 defines the optimality criterion or the objective, the value which is to be 

optimized (minimized). Given a schedule, the following can be computed for each job 𝑗: 

 

𝐶𝑗 The completion time, the time at which the processing of job 𝑗 is completed. 

𝐹𝑗 The flow time, the time job j spends in the system,  𝐹𝑗 = 𝐶𝑗 − 𝑟𝑗. 

𝐿𝑗 The lateness, 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗 , the amount of time by which the completion time of job 𝑗 

exceed its due date. Lateness can be negative if job 𝑗 finishes earlier than its due date. 

𝑇𝑗 The tardiness,  𝑇𝑗 = 𝑚𝑎𝑥{𝐿𝑗 , 0}. 

𝐸𝑗 The earliness,  𝐸𝑗 = 𝑚𝑎𝑥{−𝐿𝑗, 0}. 

𝐹𝑗 The flow time 𝐹𝑗 = 𝐶𝑗 − 𝑟𝑗   

𝑈𝑗 The unit penalty, a unit penalty of job j if it fails to meet its deadline. 𝑈𝑗 = 0 if 𝐶𝑗
≤ 𝑑

𝑗
 , 

𝑈𝑗 = 1 otherwise. 

 

The cost 𝑓𝑗 for each job 𝑗 usually takes one of the variables described above or the product of 

the weight 𝑤𝑗 with one of the variables. The optimality criterion can be any function of the costs 

𝑓𝑗, 𝑗 = 1,2,3, . . , 𝑛 . Common optimality criteria are usually in the form 
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1) 𝑓 = 𝑓𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑓𝑗|𝑗 = 1,2, . . , 𝑛}. 

2) 𝑓 = ∑𝑓𝑗. 

The following objective functions have frequently been chosen to be minimized. 

𝑓 = ∑(𝑤𝑗)𝐶𝑗 : The total (weighted) completion time. 

Introducing due dates 𝑑𝑗  ( 𝑗 = 1, … , 𝑛) we have the following objective functions: 

𝑓 = 𝐶𝑚𝑎𝑥  
: The maximum completion time (makespan) 

𝑓 = 𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝐿𝑗}  : The maximum lateness 

𝑓 = 𝑇𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑇𝑗}  : The maximum tardiness. 

𝑓 = ∑𝑇𝑗   : The total tardiness. 

𝑓 = ∑𝑈𝑗  : The total number of late jobs. 

We may also choose to minimize: 

𝑓 = ∑𝑤𝑗𝑇𝑗  : The total weighted tardiness. 

𝑓 = ∑𝑤𝑗𝑈𝑗  : The total weighted number of late jobs. 

𝑓 = ∑𝑤𝑗𝐸𝑗   : The total weighted earliness. 

Example (1): 

1/𝑟
𝑗 / ∑ 𝑤

𝑗
𝐶
𝑗
   is the problem of minimizing the total weighted completion time 

on single machine subject to non-trivial release date. 

𝑃3/𝑝𝑚𝑡𝑛, 𝑝𝑟𝑒𝑐 / 𝐿
𝑚𝑎𝑥

 

is the problem of minimizing maximum lateness on three 

identical parallel machines subject to general precedence 

constraint, allowing preemption. 

Fundamental Theorems and Algorithms:            

Theorem (Jackson): The 1//𝐿max problem is minimized by sequencing the jobs according to 

the earliest due date (EDD) rule, that is, in order of non-decreasing 𝑑𝑗 (i. e. 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤

𝑑𝑛), this rule also minimize 𝑇𝑚𝑎𝑥 for the 1// 𝑇𝑚𝑎𝑥 problem 

Theorem (Smith):  The 1// ∑ 𝐶𝑗
𝑛
𝑗=1  problem is minimized by sequencing the jobs according 

to the shortest processing time (SPT) rule, that is, in order of non-decreasing 

𝑝𝑗(i. e. 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑛), 

Theorem (Hoogeveen): The 1//𝐸 𝑚𝑎𝑥 problem is solved by sequencing the jobs according to 

the minimum slack time (MST) rule, that is, in order non-decreasing 𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗, 

(i. e. 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛). 

Theorem (Moore):  The 1//𝛴𝑈𝑗  problem, is minimized as follows: repeatedly adds jobs in 

EDD order to the end of partial schedule of on time jobs. If the addition of job j results in this 
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job being complete after time 𝑑𝑗 , then a job in the partial schedule with the largest processing 

time is removed and declared late. 

Theorem (Lawler): The 1// 𝑓𝑚𝑎𝑥 problem, fmax is minimized as follows: while there are 

unassigned jobs, assign the job that has minimum cost when scheduled in the last unassigned 

position in that position. 

 Lawler algorithm (LA) which solves the 1/prec/ 𝑓𝑚𝑎𝑥  problem or 1// 𝑓𝑚𝑎𝑥 problem where 

𝑓𝑚𝑎𝑥 ∈ {𝐿𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥
𝑤 , 𝑇𝑚𝑎𝑥

𝑤 } . 

 

 

 

 

 

 

 

Job priority is determined as a function of job parameters, the machine parameters or the 

characteristics of the store (store characteristics). When prioritizing each job, the jobs are 

sorted, and then the job with the highest priority is selected for first processing. Below are 

some scheduling rules that have been developed, studied, and implemented by many 

researchers and practitioners: 

• Longest Processing Time (LPT): the job with the largest operation processing time is 

processed first. this lends to increase work in progress and make short jobs late.  

• First Come, First Served (FCFS), or Smallest Ready Time (FCFS or SORT): The job which 

arrives first at the machine will be served first. often seen as a fair rule, especially by the 

customer, but in practice, it leads to overall inefficiency. 

• Last Come, First Served (LCFS): The job which arrives last will be served first  

Dominance Rules for MSP: Dominance rules (DR) are used efficiently in the reduction of 

existing sequences. DR is usually use to indicate whether a particular node in the BAB 

method can be deleted before computation (LB). These rules are useful when a node has a 

suboptimal solution and can be removed. If the nodes in the BAB method are dominated by 

others, DRs can also be used to solve these nodes. These developments can significantly 

reduce the number of nodes in the search for the optimal solution. DRs can also be applied to 

Lawler algorithm 

Step (1): Let 𝑁 = {1,… , 𝑛}, 𝜎 = (𝜑) and F set of all jobs with no successors. 

Step (2): Let 𝑗∗ such that 𝑓𝑗∗(∑ 𝑝𝑗𝑗∈𝑁 ) = 𝑚𝑖𝑛𝑗∈𝐹 {𝑓𝑗(∑ 𝑝𝑗𝑗∈𝑁 )}. 

Set 𝑁 = 𝑁 − {𝑗∗} and sequence 𝑗∗ in 𝜎, 𝑖. 𝑒. , 𝜎 =  (𝑗∗, 𝜎).  Modify F to represent 

the new set of schedulable jobs. 

 Step (3): If 𝑁 =  𝜑 stop, otherwise go to step (2). 
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such problems. Let ND denote the number of jobs dominated by it and the number of jobs not 

dominated by NND  

Definition: The graph 𝐺 represents a finite number of nodes or vertices 𝑉 and a finite number 

of edges connecting two vertices, and the edge connecting the vertex to itself is called a loop.  

Definition: A directed graph, also known as a graph, is a graph with a finite number of directed 

edges, each connecting an ordered pair of vertices Strang, (2009).  

Definition: If 𝑛 vertices make up a graph called G, then 𝐴(𝐺) = [𝑎𝑖𝑗] be the matrix (which is 

called adjacency matrix), whose 𝑖𝑡ℎ and  𝑗𝑡ℎ element is 1 if there is at least one edge between 

two vertices 𝑣1 and 𝑣2 and zero otherwise Strang, (2009), 

 𝑎𝑖𝑗 = {

0, if 𝑖 = 𝑗 𝑜𝑟 𝑖 ↛ 𝑗    
1, if 𝑖 → 𝑗                  
𝑎𝑖𝑗  𝑎𝑛𝑑 𝑎̅𝑖𝑗,   𝑖 ↔ 𝑗  

 

𝐴(𝐺) can be formulated as follows: 

𝐴(𝐺) =

[
 
 
 
 

0 𝑎12 𝑎13 ⋯ 𝑎1𝑛

𝑎21 0 𝑎23 ⋯ 𝑎2𝑛

𝑎31 𝑎32 0 ⋯ 𝑎3𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 ⋯ 0 ]

 
 
 
 

 . 

Emmon's Theorem (1): For the 1/ / ∑ 𝑇𝑗 problem, if 𝑝𝑖 ≤ 𝑝𝑗 and 𝑑𝑖 ≤ 𝑑𝑗  then there exists an 

optimal sequencing in which job 𝑖 sequencing before job 𝑗  

Remark (1): For problem 1/ /  𝐸𝑚𝑎𝑥 there exists an optimum solution s.t. job 𝑖 is sequenced 

before job 𝑗 if 𝑝𝑖 ≤ 𝑝𝑗  and 𝑠𝑖 ≤ 𝑠𝑗  

Example (2): Let's use MSP with 6 jobs and the following processing time, due date: 

 

 𝑗𝑜𝑏1 𝑗𝑜𝑏2 𝑗𝑜𝑏3 𝑗𝑜𝑏4 𝑗𝑜𝑏5 𝑗𝑜𝑏6 

𝑝𝑗 
7 7 4 6 1 9 

𝑑𝑗 
19 16 15 16 10 14 

𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 
12 9 9 10 9 5 

 

The DRs by using theorem (1) is illustrated in Figure (1). 

 

 
5 3 

6 

4 2 1 
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Notice that there are (11) DRs: 2→1, 3→ 1,3→2, 3→4, 4→1,4→2,5→ 1, 5→2, 5→ 3, 5→ 

4,5→6, with the number of jobs not dominated (4): 3  6,  

4  6,2  6,1  6. The adjacency matrix 𝐴 is as followings: 

𝐴(𝐺) =

[
 
 
 
 
 

0 0 0 0 0 𝑎16

1 0 0 0 0 𝑎26

1 1 0 1 0 𝑎36

1 1 0 0 0 𝑎46

1 1 1 1 0 1
𝑎61 𝑎62 𝑎63 𝑎64 0 0 ]

 
 
 
 
 

 . 

These DRs may be useful for finding a good solution to some problems such as 1//∑𝑇𝑗. 

Example (3): Let's use MSP with 6 jobs and the following processing time, due date: 

 

 𝑗𝑜𝑏1 𝑗𝑜𝑏2 𝑗𝑜𝑏3 𝑗𝑜𝑏4 𝑗𝑜𝑏5 𝑗𝑜𝑏6 

𝑝𝑗 
16 12 12 4 8 10 

𝑑𝑗 
29 24 22 6 12 18 

𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 
13 12 10 2 4 8 

 

The DRs by using remark (1) is illustrated in Figure (2). 

 

 

 

 

 

Notice that there are (14) DRs: 4→5, 4→ 6,4→3, 4→2, 4→1,5→6,5→ 3, 5→2, 5→1, 6→3, 

6→1, 3→2, 3→1, 2→1, with adjacency matrix 𝐴 is as followings: 

𝐴(𝐺) =

[
 
 
 
 
 
0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 1 1
1 1 1 0 0 1
1 1 1 0 0 0]

 
 
 
 
 

 . 

These DRs may be useful for finding a good solution to some problems such as 1//𝐸𝑚𝑎𝑥. 

Methods for Solving MSP: The optimal solution of the MSP is to find a processing sequence 

for the jobs on each machine so that a given production level reaches its optimal value. The 

goal of the MSP is to find an optimal schedule from a finite number of feasible schedules. To 

find the one with the smallest value of the objective function, all possibilities can be searched. 

When all schedules are compared, this search for a finite set of schedules should eventually 

end and the smallest value (optimal solution) should be found. In this case, if there are 𝑛 jobs 

4 5 1 6 3 2 

Figure (2):  The DRs for the example (3) 
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and a machine scheduling problem, there are (𝑛!) different sequence. Thus, for the 

corresponding 𝑚-machine problem, there are possible processing orders (𝑛!)𝑚 and which is 

very large even for small values of (𝑛) and (𝑚). The most popular methods for solving MSPs 

are generally categorized into types. The first method leads to optimal solutions and is called 

“exact methods”, the second method leads to near-optimal solutions and is called "approximate 

methods" or "heuristic methods". The following figure (3) shows the solution methods used to 

solve MSP. 

 

 

 

 

 

 

 

 

 

 

 

Exact Methods: There are several exact methods to find the optimal solution for MSP. This 

study gives a brief introduction to two methods (Complete Enumeration, Branch and Bound 

and Dynamic Programming).  

Complete Enumeration Method: The complete enumeration method (CEM) generates the 

permutation or ordering of the objects one by one to find the optimal solution and list all 

possible permutations, then delete the non-optimal permutations from the list, leaving the ones 

that are optima. Searching for the optimal permutation among all possible permutations using 

the complete enumeration is not suitable even for problems of small size. Thus, CEM can only 

be used for problems with small sizes 𝑛 < 10 or 11. For example, there are (𝑛!) different 

sequences obtained for SMSP for 𝑛 jobs, and there are (𝑛!)𝑚 different sequences obtained for 

𝑛 jobs and case 𝑚 machines scheduling problem.  

Branch and Bound Method: Branch and Bound method (BAB) is provided an exact solution 

to the NP-hard MSP problem. BAB applies implicit enumeration techniques to find an optimal 

solution by automatically testing some feasible solutions. BAB is based on finding trees of 

nodes related to these solutions. Each node has contained a subsequence of jobs. This technique 

Solution approach 

Exact 

Heuristics Hybrid approach Mate-heuristics 

Figure (3): The solution methods to solve MSP 

 

Approximate 
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contains (𝑛 − 1) levels. For level zero there are no open nodes yet, while for level one there 

are nodes to be checked. The first 1𝑡ℎ position in the specified sequence is used by one job in 

numerical order. Thus, each node in the level (𝑛 − 1)𝑡ℎ must branch to (𝑛 − 2). This 

processing contains only one fragment. To reduce the calculations, lower bounds (LBs) are 

calculated at each level for each node. The LB is calculated by a formula derived from the 

objective function of the MSP. Which LB is the minimum from which we branch from this 

node, and this describes why the computation is low. In the general description of the BAB 

methods, all possible sets are divided into different subgroups. For each subset, the LB is 

calculated, this means the cost of sequential jobs (depending on the objective function) and the 

cost of non-sequential jobs (depending on the derived LB). If the LB of this subset is greater 

than or equal to the upper bound (UB), this subset is ignored. the Upper Bound UB is usually 

defined as the minimum value of all currently existing feasible solutions, since any subset with 

a value less than the UB can only exist in the remaining subsets. These remaining subsets must 

be considered one after the other. According to a search strategy, one of these subsets is selected 

from which the branch is accessed. This subset is then subdivided into individual smaller 

subsets. As soon as, one of these subsets contains only one element, a complete sequence of 

functions should be available. This sequence is evaluated and if its value is smaller than the 

current maximum, this upper bound is changed accordingly. Then, the procedure is repeated 

until all subsets (nodes) have been taken into account. The upper bound at the end of this BAB 

procedure is optimal solution for a particular problem. Depending on the problem, the search 

tree node can also be eliminated using the sovereignty properties or feasibility conditions 

developed for the particular problem. The steps of BAB method introduced in the following 

algorithm (1): 

Algorithm (1): Branch and Bound (BAB) 

Step (1) Compute upper bound (UB), partitions subsets, by using a branching procedure. 

Step (2)   Compute lower bounds (LB) using LB procedure. 

Step (3) Exclude the subsets which are note include any optimal by using steps1 and 

steps2. 

Step (4) Determine active node, with smallest LB. 

Step (5) If LB > UB for a particular subset, then this subset is ignored (UB is the 

minimum. of the values of all 𝑓 solutions currently found). The remaining 

subsets with (LB ≤ UB) have to be considered one at a time. One of these 

subsets is chosen according to some search strategy from which to branch. 
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Step (6) When the branching end at a complete sequence of jobs, this sequence is 

evaluated and if its value is less than the current UB, then this UB is reset to 

take that value. 

Step (7) Repeat the procedure until all nodes have been considered (i.e., LB of all nodes 

in the search tree greater than or equal UB), a feasible solution with this UB is 

an optimal solution. 

 

Figure (4) shows the BAB flow chart for three jobs 

 

 

 

 

 

 

 

 

 

 

Figure (4): Flowchart of the BAB 

Dynamic Programming: In the dynamic optimization approach, complex problems are 

broken down into a series of simpler sub-problems, each of which is solved only once before 

the data structure is created. The next time the same subproblem is encountered, the solution is 

not recalculated, but a previously calculated answer is performed. This reduces computation 

time at the expense of at least a little more storage space. To facilitate the search process, all 

solutions of subproblems are indexed in some way, usually based on the values of the input 

parameters ). However, there are some difficulties in doing so: finding a good way to divide 

the problem into a number of subproblems, and the need for a large storage unit for information 

in the computer due to a number of quantities that are calculated from the iterative equations 

during the phases and that need to be stored during the calculations. Therefore, it is difficult to 

solve problems where there are many 𝑛 ≤ 30 jobs. 

Heuristic Methods: Exact methods take a long time to find the optimal solution and have 

failed for large. On the other hand, Heuristic methods (HMs) are used to find the optimal 
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solutions that are impractical for more than a few objects. HMs can replace these enumeration 

methods and attempt to find an optimal (or near-optimal) solution to difficult problems. In 

addition, it can be useful when the search for the optimal solution takes more time than is 

practical or cannot be found. Generally, HMs can be categorized into scheduling rules 

constructive and improvement heuristics. The constructive heuristics create a schedule from a 

list of planned jobs. Improvement heuristics, start with a problem and work their way up. In 

constructive heuristics, once a schedule has been created, it cannot be changed, whereas in 

improvement heuristics, an original solution is iteratively improved. 

Example (4): 

Consider the following 

schedule: 

 

 

 

Then to calculate the total completion time, maximum lateness, total earliness, total tardiness, 

and the total number of late jobs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then: ∑ 𝐶
𝑗
= 7 + 10 + 12 + 21 + 26 + 27 + 29 + 35 = 167,  𝐿

𝑚𝑎𝑥 
= 16,∑𝐸

𝑗
=

15,∑ 𝑇
𝑗
= 34,∑𝑈

𝑗
= 4. 

Single Machine Scheduling Problems: 1 / / ∑ 𝑪
𝒋 Problem 

This is the problem of sequencing 𝑛 jobs on a single machine to minimize the total 

completion time. This problem is solved by the SPT (shortest processing time) rule. The 

jobs are sequenced in non-decreasing order of processing times 𝑃
𝑗
. 

Example (5):  

 Solve the following 1// ∑ 𝐶
𝑗 problem: 

To minimize ∑ 𝐶
𝑗
, we use the SPT rule as 

follows: 

𝒋 1 2 3 4 5 6 7 8 

𝑷
𝒋
 7 3 2 9 5 1 2 6 

𝒅
𝒋
 5 13 20 5 30 21 29 25 

𝒋 1 2 3 4 5 6 7 8 

𝑷
𝒋
 7 3 2 9 5 1 2 6 

𝒅
𝒋
 5 13 20 5 30 21 29 25 

𝑪
𝒋
 7 10 12 21 26 27 29 35 

𝑳
𝒋
 2 −3 −8 16 −4 6 0 10 

𝑬
𝒋
 0 3 8 0 4 0 0 0 

𝑻
𝒋
 2 0 0 16 0 6 0 10 

𝒋 1 2 3 4 5 6 7 8 

𝑃
𝑗
 7 3 2 9 5 1 2 6 
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Then by SPT rule: ∑ 𝐶
𝑗
=1+ 3 + 5 + 8 + 13 + 19 + 26 + 35 =110. That is the optimal schedule 

is s= (6,3,7,2,5,8,1,4) with ∑ 𝐶
𝑗
=110. 

1 / / ∑ 𝒘
𝒋
𝑪

𝒋
 Problem 

This is the problem of sequencing 𝑛 jobs on a single machine to minimize the weighted total 

completion time. This problem is solved by the SWPT (shortest weighted processing time) 

rule. The jobs are sequenced in non-decreasing order of processing times 𝑃
𝑗 / 𝑤𝑗

  

 

 Example (6): 

Consider the following schedule: 

To minimize ∑ 𝒘
𝒋
𝑪

𝒋
, we must first find 𝑃

𝑗 / 𝑤𝑗
 

for each job 𝑗: 

 

𝒋 1 2 3 4 5 

𝑷
𝒋
 6 10 12 18 4 

𝒘
𝒋
 2 4 3 3 4 

𝑃
𝑗 / 𝑤𝑗

 3 2.5 4 6 1 

Then, use the SWPT rule as follows: 

 

𝒋 5 2 1 3 4 

𝑃
𝑗 / 𝑤𝑗

 1 2.5 3 4 6 

𝑷
𝒋
 4 10 6 12 18 

𝒘
𝒋
 4 4 2 3 3 

𝑪
𝒋
 4 14 20 32 50 

𝒘
𝒋
𝑪

𝒋
 16 56 40 96 150 

𝒋 6 3 7 2 5 8 1 4 

𝑷
𝒋
 1 2 2 3 5 6 7 9 

𝒅
𝒋
 1 3 5 8 13 19 26 35 

𝒋 1 2 3 4 5 

𝑷
𝒋
 6 10 12 18 4 

𝒘
𝒋

 2 4 3 3 4 
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Then by SWPT: ∑ 𝒘
𝒋
𝑪

𝒋
= 358. That is the optimal schedule is s= (5,2,1,3,4) with ∑ 𝒘

𝒋
𝑪

𝒋
= 358 

(∑𝒘
𝒋
𝑪

𝒋
= 498 for the original sequence). 

1 / / 𝑳
𝐦𝐚𝐱 P r o b l e m  

This is the problem of sequencing 𝑛 jobs on a single machine to minimize the maximum lateness. 

This problem is solved by the EDD (earliest due date) rule. The jobs are sequenced in non-

decreasing order of due dates 𝑑
𝑗
. 

 

 

Example (7): 

Consider the following schedule: 

 

 

 

 

 

 

 

To minimize 𝐿𝑚𝑎𝑥 we use the EDD rule: 

∴ 𝐿𝑚𝑎𝑥 = 6 (for the original schedule 𝐿𝑚𝑎𝑥 = 10).  

The optimal schedule is s = (4,3,1,2) with 𝐿𝑚𝑎𝑥 = 6. 

1 / / ∑ 𝑼
𝒋
 Problem 

This is the problem of sequencing 𝑛 jobs on a single machine to minimize the number of late jobs 

(minimize the total unit penalties). This problem is solved by Moore algorithm. Let 𝐸 denote the 

set of early jobs and 𝐿 denote the set of late jobs. The jobs of 𝐸 are sequenced in EDD rule followed 

by the jobs of 𝐿. 

Moore (and Hodgson) Algorithm 

Step 1: Number the jobs in EDD order. Set 𝐸 =  𝜙, 𝐿 =  𝜙 , 𝑘 = 0, 𝑡 = 0. 

Step 2: Let 𝑘 =  𝑘 + 1. If  𝑘 > 𝑛 go to step 4. 

Step 3: Let 𝑡 = 𝑡 + 𝑃
𝑘 and 𝐸 = 𝐸 ∪ {𝑘}. If 𝑡 < 𝑑

𝑘
 go to step 2. If 𝑡 > 𝑑

𝑘 find 

𝑗 ∈ 𝐸 with 𝑃
j as large as possible and let 𝑡 =  𝑡 − 𝑃

𝑗  , 𝐸 = 𝐸 − {𝑗}, 𝐿 = 𝐿 ∪ {𝑗}. Go to step 2. 

Step 4: 𝐸 is the set of early jobs and 𝐿 is the set of late jobs. 

 

Example (8): 

Minimize ∑ 𝑈𝑗 for the following schedule: 

 

𝒋 1 2 3 4 5 6 7 8 

𝑷
𝒋
 5 3 1 8 4 7 5 3 

𝒋 1 2 3 4 

𝑷
𝒋
 4 5 3 2 

𝒅
𝒋
 7 8 5 4 

𝒋 4 3 1 2 

𝑷
𝒋
 2 3 4 5 

𝒅
𝒋
 4 5 7 8 

𝑪
𝒋
 2 5 9 14 

𝑳
𝒋
 −2 0 2 6 
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𝒅
𝒋
 12 32 10 18 23 27 15 24 

 

To minimize ∑ 𝑈𝑗 we use Moore algorithm: 

  

𝒋 3 1 7 4 5 8 6 2 

𝑷
𝒋
 1 5 5 8 4 3 7 3 

𝒅
𝒋
 10 12 15 18 23 24 27 32 

𝑪
𝒋
 1 6 11 19     

𝑪
𝒋
 1 6 11 * 15 18 25 28 

 

∴ ∑𝑈𝑗=1, 𝐸= {3,1,7,5,8,6,2}, 𝐿 = {4}. The optimal schedule is: s = (3,1,7,5,8,6,2,4) (in the 

original schedule ∑𝑈𝑗 =3). 

Example (9): 

Minimize ∑ 𝑈𝑗 for the following schedule: 

 

Solution: 

To minimize ∑ 𝑈𝑗 we use Moore’s algorithm: 

 

𝒋 7 3 1 4 6 2 8 5 

𝑷
𝒋
 5 7 4 6 7 2 5 4 

𝒅
𝒋
 8 10 12 15 22 27 28 30 

𝑪
𝒋
 5 12       

𝑪
𝒋
 5 * 9 15 22 24 29  

𝑪
𝒋
 5 * 9 15 * 17 22 26 

𝒋 1 2 3 4 5 6 7 8 

𝑷
𝒋
 4 2 7 6 4 7 5 5 

𝒅
𝒋
 12 27 10 15 30 22 8 28 
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Remark: 5th job (Job 6) is selected although it is early since it has the greatest 

𝑃𝑗 among all jobs in 𝐸. 

∴ ∑𝑈𝑗= 2, 𝐸= {7,1,4,2,8,5}, 𝐿= {3,6}. The optimal schedule is: s= (7,1,4,2,8,5,3,6). Also, s= 

(7,1,4,2,8,5,6,3) is an optimal schedule. 

Example (10): 

Minimize ∑𝑈𝑗 for the following schedule: 

 

 

 

Solution: 

To minimize ∑ 𝑈𝑗 we use Moore’s algorithm: 

𝒋 3 7 8 2 6 1 4 5 

𝑷
𝒋
 1 1 3 3 3 4 5 2 

𝒅
𝒋
 4 4 5 6 6 7 7 9 

𝑪
𝒋
 1 2 5 8     

𝑪
𝒋
 1 2 * 5 8    

𝑪
𝒋
 1 2 * * 5 9   

𝑪
𝒋
 1 2 * * 5 * 10  

𝑪
𝒋
 1 2 * * 5 * * 7 

∴ ∑ 𝑈𝑗 = 4, 𝐸= {3,7,6,5}, 𝐿= {8,2,1,4}. The optimal schedule is: s = (3,7,6,5,8,2,1,4). 

 

 

 

 

𝒋 1 2 3 4 5 6 7 8 

𝑷
𝒋
 4 3 1 5 2 3 1 3 

𝒅
𝒋
 7 6 4 7 9 6 4 5 



 

 


