
Chapter1: Introduction
1.1 REPRESENTATION OF NUMBERS ON A COMPUTER

(Decimal and binary representation) 
Numbers can be represented in various forms. The familiar decimal system (base 10) uses ten digits

0, 1, ... , 9. A number is written by a sequence of digits that correspond to multiples of powers of 10. As

shown in Fig. 1-1, the first digit to the left of the decimal point corresponds to 100. The digit next to it on the

left corresponds to 101 , the next digit to the left to 102 , and so on. In the same way, the first digit to the right

of the decimal point corresponds to 10-1, the next digit to the right to 10-2, and so on. 

Fig. 1-1: Representation of the number 60,724.3125 in the decimal system (base 10). 

In general, however, a number can be represented using other bases. A form that can be easily implemented

in computers is the binary (base 2) system. In the binary system, a number is represented by using the two

digits 0 and 1. A number is then written as a sequence of zeros and ones that correspond to multiples of

powers of 2. The first digit to the left of the decimal point corresponds to 20. The digit next to it on the left

corresponds to 21, the next digit to the left to 22, and so on. In the same way, the first digit to the right of the

decimal point corresponds to  r1, the next digit to the right to r2, and so on. The first ten digits 1, 2, 3, . . . , 10

in base 10 and their representation in base 2 are shown in Fig. 1-2. The representation of the number 19.625 

in the binary system is shown in Fig. 1-3. 

Figure 1-2: Representation of numbers in decimal and binary forms. 



Figure 1-3: Representation of the number 19.625 in the binary system (base 2). 

Another example is shown in Fig. 1-4, where the number 60,724.3125 is written in binary form. 

Figure 1-4: Representation of the number 60,724.3125 in the binary system (base 2). 

Computers store and process numbers in binary (base 2) form: 

Each binary digit (one or zero) is called a bit (for binary digit). Binary arithmetic is used by computers

because modem transistors can be used as extremely fast switches. Therefore, a network of these may be

used to represent strings of numbers with the "1" referring to the switch being in the "on" position and "O"

referring to the "off' position. Various operations are then performed on these sequences of ones and zeros. 

1.1.2 Floating point representation 
To accommodate large and small numbers, real numbers are written in floating point representation.

Decimal floating point representation (also called scientific notation) has the form: 

d.ddddd × l0P                                                             (1. 1) 

One digit is written to the left of the decimal point, and the rest of the significant digits are written to the

right of the decimal point. The number d.dddddd is called the mantissa. Two examples are: 

6519.23 written as 6.51923 x 103

0.00000391 written as 3.91 x 10-6 

The power of 10, p, represents the number's order of magnitude, provided the preceding number is smaller

than 5. Otherwise, the number is said to be of the order of p + 1. Thus, the number 3.91 x 10-6 is of the order

of 10-6, O(10-6), and the number 6.51923 x 103 is of the order of 104(written as O(104) ). Binary floating

point representation has the form: 

1. bbbbbb x 2bbb    (b is a decimal digit)                         (1. 2) 

In this form, the mantissa is . bbbbbb , and the power of 2 is called the exponent. Both the mantissa and the

exponent are written in a binary form. The form in Eq. (1. 2) is obtained by normalizing the number (when it

is written in the decimal form) with respect to the largest power of 2 that is smaller than the number itself.

For example, to write the number 50 in binary floating point representation, the number is divided (and

multiplied) by 25 = 32 (which is the largest power of 2 that is smaller than 50): 



1.2 ERRORS IN NUMERICAL SOLUTIONS 
Numerical solutions can be very accurate but in general are not exact. Two kinds of errors are

introduced when numerical methods are used for solving a problem. One kind, which was mentioned in the

previous section, occurs because of the way that digital computers store numbers and execute numerical

operations. These errors are labeled round-off errors. The second kind of errors is introduced by the

numerical method that is used for the solution. These errors are labeled truncation errors. Numerical methods

use approximations for solving problems. The errors introduced by the approximations are the truncation

errors. Together, the two errors constitute the total error of the numerical solution, which is the difference

(can be defined in various ways) between the true (exact) solution (which is usually unknown) and the

approximate numerical solution. Round-off, truncation, and total errors are discussed in the following three

subsections. 

1.2.1 Round-Off Errors 
Numbers are represented on a computer by a finite number of bits . Consequently, real numbers that

have a mantissa longer than the number of bits that are available for representing them have to be shortened.

This requirement applies to irrational numbers that have to be represented in a finite form in any system, to

finite numbers that are too long, and to finite numbers in decimal form that cannot be represented exactly in

binary form. A number can be shortened either by chopping off, or discarding, the extra digits or by

rounding. In chopping, the digits in the mantissa beyond the length that can be stored are simply left out. In

rounding, the last digit that is stored is rounded. 

As a simple illustration, consider the number 2/3. (For simplicity, decimal format is used in the

illustration. In the computer, chopping and rounding are done in the binary format.) In decimal form with

four significant digits, 2/3 can be written as 0.6666 or as 0.6667. In the former instance, the actual number

has been chopped off, whereas in the latter instance, the actual number has been rounded. Either way, such

chopping and rounding of real numbers lead to errors in numerical computations, especially when many

operations are performed. This type of numerical error (regardless of whether it is due to chopping or

rounding) is known as round-off error. Example 1-1 shows the difference between chopping and rounding. 

Example 1-1: Round-off errors 
Consider the two nearly equal numbers p = 9890.9 and q = 9887. l . Use decimal floating point

representation (scientific notation) with three significant digits in the mantissa to calculate the difference

between the two numbers, (p - q) . Do the calculation first by using chopping and then by using rounding.

SOLUTION 

In decimal floating point representation, the two numbers are: 

p = 9.8909 x 103 and q = 9.8871 x 103 

If only three significant digits are allowed in the mantissa, the numbers have to be shortened. If chopping is

used, the numbers become: 

p = 9.890 x 103 and q = 9.887 x 103 

Using these values in the subtraction gives: 

p- q = 9.890 x 103 - 9.887 x 103 = 0.003 x 103 = 3 



If rounding is used, the numbers become: 

p = 9.891 x 103 and q = 9.887 x 103 (q is the same as before) 

Using these values in the subtraction gives: 

p- q = 9.891 x 103 - 9.887 x 103 = 0.004 x 103 = 4 

The true (exact) difference between the numbers is 3.8. These results show that, in the present problem,

rounding gives a value closer to the true answer. 

The magnitude of round-off errors depends on the magnitude of the numbers that are involved since, as

explained in the previous section, the interval between the numbers that can be represented on a computer

depends on their magnitude. Round-off errors are likely to occur when the numbers that are involved in the

calculations differ significantly in their magnitude and when two numbers that are nearly identical are

subtracted from each other. 

For example, consider the quadratic equation: 

x2 - 100.000lx + 0.01 = 0                         (1.3) 

for which the exact solutions are x1 = 100 and x2 = 0.0001. The solutions can be calculated with the

quadratic formula: 

x1 = 
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
 and x2=

−𝑏−√𝑏2−4𝑎𝑐

2𝑎
          (1.4) 

Using MATLAB (Command Window) to calculate x1 and x2 gives: 

>> format long 

>> a = 1; b = -100.0001; c = 0.01;

>> root = sqrt(b^2 - 4*a*c) 

root = 

           99.999899999999997 

>> x1 = (-b + root)/(2*a) 

xl = 

         100 

>> x2 = (-b - root)/(2*a) 

x2 = 

        1.000000000033197e-004 

The value that is calculated by MATLAB for x2 is not exact due to round-off errors. The round-off error

occurs in the numerator in the expression for x2 • Since b is negative, the numerator involves subtraction of

two numbers that are nearly equal. 

Another example of round-off errors is shown in Example 1-2. 

Example 1-2: Round-off errors 
Consider the function: 

𝑓(𝑥) = 𝑥(√𝑥 − √𝑥 − 1)                (1.5) 

(a) Use MATLAB to calculate the value of f(x) for the following three values of x: 

x = 10, x = 1000 , and x = 100000 . 

(b) Use the decimal format with six significant digits to calculate f(x) for the values of x in part (a). Compare

the results with the values in part (a). 

SOLUTION 

(a) 

>> format long g 

>> x = [10 1000 100000] ;

>> Fx = x.*(sqrt(x) - sqrt(x-1)) 

Fx = 

      1.6227766016838 15.8153431255776 158.114278298171 

(b) Using decimal format with six significant digits in Eq. (1.5) gives the following values for f(x): 



𝑓(10) = 10(√10 − √10 − 1) = 10(3.16228 − 3)  =  1.62280 

This value agrees with the value from part (a), when the latter is rounded to six significant digits. 

𝑓(1000) = 1000(√1000 − √1000 − 1) = 1000(31.6228-31.6070) = 15.8 

When rounded to six significant digits, the value in part (a) is 15.8153. 

𝑓(100000) = 100000(√100000 − √100000 − 1)= 100000(316.228-316.226) = 200 

When rounded to six significant digits, the value in part (a) is 158.114.

The results show that the rounding error due to the use of six significant digits increases as x increases and

the relative difference between √𝑥 and √𝑥 − 1decreases. 

1.2.2 Truncation Errors 
Truncation errors occur when the numerical methods used for solving a mathematical problem use an

approximate mathematical procedure. A simple example is the numerical evaluation of sin(x), which can be

done by using Taylor's series expansion : 

sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯            (1.6) 

The value of sin (
𝜋

6
) can be determined exactly with Eq. (1.6) if an infinite number of terms are used. The

value can be approximated by using only a finite number of terms. The difference between the true (exact)

value and an approximate value is the truncation error, denoted by ETR . For example, if only the first term is

used: 

sin (
𝜋

6
) = 

𝜋

6
 = 0.5235988  ,  ETR = 0.5 - 0.5235988 = -0.0235988 

If two terms of the Taylor's series are used: 

sin (
𝜋

6
) = 

𝜋

6
−

𝜋

6

3

3!
 = 0.4996742  ,  ETR = 0.5 - 0.4996742 = 0.0003258 

Another example of truncation error that is probably familiar to the reader is the approximate calculation of

derivatives. The value of the derivative of a function f(x) at a point x1 can be approximated by the

expression: 
𝑑𝑓(𝑥)

𝑑𝑥
|𝑥 = 𝑥1 =

𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
          (1.7) 

where x2 is a point near x1 • The difference between the value of the true derivative and the value that is 

calculated with Eq. (1.7) is called a truncation error. The truncation error is dependent on the specific

numerical method or algorithm used to solve a problem. Details on truncation errors are discussed as various

numerical methods are presented. The truncation error is independent of round-off error; it exists even when

the mathematical operations themselves are exact. 

1.3 Absolute and Relative Errors 
If XE is the exact or true value of a quantity and XA is its approximate value, then |XE– XA| is called the

absolute error Ea. Therefore absolute error: 

Ea = |XE – XA |                        (1.8) 

and relative error is defined by: 

                     (1.9) 

provided XE ≠  0 or XE is not too close to zero. The percentage relative error is: 

         (1.10) 



Significant digits: The concept of a significant figure, or digit, has been developed to formally define the

reliability of a numerical value. The significant digits of a number are those that can be used with

confidence. 

If XE is the exact or true value and XA is an approximation to XE, then XA is said to approximate XE to t

significant digits if t is the largest non-negative integer for which: 

|
𝑋𝐸−𝑋𝐴

𝑋𝐸
| < 5 × 10−𝑡                (1.11) 

                    

Example 1-3: 
If  XE = e (base of the natural algorithm = 2.7182818) is approximated by XA = 2.71828, what is the

significant number of digits to which XA approximates XE? 

Solution: 

|
𝑋𝐸 − 𝑋𝐴

𝑋𝐸
| =

𝑒 − 2.71828

𝑒
 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 < 5 × 10−6 

Hence XA approximates XE to 6 significant digits. 

Example 1-4: 
Let the exact or true value = 20/3 and the approximate value = 6.666.

Solution: 

The absolute error is 0.000666... = 2/3000. 

The relative error is (2/3000)/ (20/3) = 1/10000. 

The number of significant digits is 4. 

Example 1-5: 
Given the number 𝜋is approximated using n = 4 decimal digits. 

(a) Determine the relative error due to chopping and express it as a per cent. 

(b) Determine the relative error due to rounding and express it as a per cent.

Solution: 

Example 1-6: 
If the number 𝜋= 4 tan–1(1) is approximated using 4 decimal digits, find the percentage relative error due to, 

(a) chopping   (b) rounding. 

Solution: 



1.3 PROBLEMS 
Problems to be solved by hand 

Solve the following problems by hand. When needed, use a calculator or write a MATLAB script file to

carry out the calculations. 

1. Convert the binary number 1010100 to decimal format. 

2. Consider the function 𝑓(𝑥) =
1−cos 𝑥

sin 𝑥
. 

a) Use the decimal format with six significant digits (apply rounding at each step) to calculate

(using a calculator) f(x) for x = 0.007. 

b) Use MATLAB (format long) to calculate the value of f(x). Consider this to be the true value,

and calculate the true relative error, due to rounding, in the value of f(x) that was obtained in

part (a). 

3. Consider the function 𝑓(𝑥) =
√4+𝑥−2

𝑥
. 

a) Use the decimal format with six significant digits (apply rounding at each step) to calculate

(using a calculator) f(x) for x = 0.001. 

b) Use MATLAB (format long) to calculate the value of f(x). Consider this to be the true value,

and calculate the true relative error, due to rounding, in the value of f(x) that was obtained in

part (a). 


