

Description Form Principles of Operations Research and QSB Applications (2025 / 2026)						
Material Name	Principles of Operations Research and QSB Applications			Module Delivery		
Unit Type	Basic Lea	rning activity		×Theory		
Unit Code	AC	2105		□Lect	ure	
Number of hours according to the ECTS system	6		☐ laboratory ☐ Tutorial ×practical			
SWL Hour/Semester		150		Symposium		
Unit level	2	Deliver	y Sen	nester 1		
Scientific Department Code		College Code				
Head of Department		e-mail				
Scientific title of the head of the department		Unit Commander Qualifications				
Subject Teacher	e-mail			•		
Name of peer references		e-mail				
Date of approval of the Scientific Committee		Versio	on nur	mber		

Relationship with other subjects				
Prerequisites Unit None Semester				
Common Requirements Unit		Semester		

Course objective	es, learning outcomes and instructional contents
course objective	25, rearring outcomes and instructional contents
	1.Introduce the student to the concepts and tools of Operations Research and their role in solving managerial, accounting, and economic problems.
Course Objectives	2.Enable the student to formulate mathematical models for managerial, accounting, and economic problems.
	3. Train the student to use the QSB program for solution and analysis.
	3.Develop decision-making skills based on quantitative analysis.
	1.Formulate mathematical models for problems in management, accounting, and economics.
Learning outcomes of the	2.Solve the models using both manual and software-based methods.
course	3.Interpret and analyze the results to make scientific decisions based on a quantitative foundation.
	4.Use the QSB program efficiently in Operations Research application
Indicative Contents	 Introduction to Operations Research and its role in different fields. Understanding mathematical and non-mathematical models in Operations Research.
	3. Linear programming models and their applications.4. Transportation models and their implementation mechanism.5. Assignment models and how to work with them.6. Project networks, including:

- * General introduction to project networks.
- * How to construct a project network.
- * Critical path calculation.
- * Time risk analysis.
- * Using the Critical Path Method (CPM) and PERT.
- * Cost-time trade-off analysis.
- 7. Competition and game problems and their applications in both the private and public sectors.

Learning and Teaching Strategies

- 1. **Active Learning**:
- * Classroom discussions after dividing students into groups and conducting competitions among them on the material covered in class.
- 2. **Real-World Applications**:
- * Discussing real cases and problems in public and private sector organizations and presenting them to explore students' ideas in this regard.

Strategies

- 3. **Practical Activities**:
- * Discussing real solutions to the problems addressed and the extent of improvement achieved after the intervention.
- 4. **Problem-Based Learning**:
- * **Scenario Presentation**: Providing students with real-world scenarios that require problem analysis.
- * **Guided Discovery**: Guiding students through the process of identifying relevant concepts and Operations Research techniques.

5. Technology	integration"":	

* **Online Resources**: Utilizing online resources for interactive exercises and simulations.

6. **Assessment and Feedback**:

- * **Variety of Assessments**: Using a mix of assessments, including quizzes, exams, projects, and presentations.
- * **Feedback**: Providing constructive and timely feedback on students' work.

Learning Strategies for Students

- 1. **Active Participation**: Engage in classroom discussions, group work, and practical activities.
- 2. **Regular Practice**: Solve problems and practical exercises to reinforce understanding.
- 3. **Use of Resources**: Make use of textbooks and online resources.
- 4. **Seeking Help**: Do not hesitate to ask questions or seek help from the instructor or classmates.

The student's academic load is calculated for 15 weeks				
Structured SWL (h/sem) Regular academic load of the student during the semester	Structured SWL (h/w) Regular student load per week 3.2			
Unstructured SWL (h/sem) Irregular academic load of the student during the semester	102	Unstructured SWL (h/w) 102 Irregular student academic load per week		
Total SWL (h/sem) The student's total academic load	200			

during the semester

Course Evaluation					
		Time/N umber	Weight (marks)	Week due	Related learning outcomes
	auditions		20% (20)		LO #2 and #14
evalua	Tasks		10% (10)		LO #3 and #13
tions	Projects/Laboratory.		0% (0)		All
	Report		10% (10)		LO #5 and #10
auditi	Mid-term Exam	10% (1			LO #1 - #6
ons	Final Exam		50% (50)		All
Final Assessment		100%(100 MARKS)			

Theoretical Weekly Curriculum				
	Material Covered			
First week	Introduction to Operations Research, including the definition, importance, stages, and applications of Operations Research			
Second week	Linear Programming, including the definition, stages, general form, canonical form, and standard form			
Third week	Building the mathematical model for a linear programming problem			
Fourth week	Methods for Solving a Linear Programming Problem, including the Graphical Method, the Big-M Method, and the Two-Phase Method			
Fifth week	Special Cases and Sensitivity Analysis in Linear Programming, including Shadow Prices and Reduced Costs			
Week Six	Applications and Examples of Linear Programming in the QSB Program, with Results Analysis and Recommendations			
Week seven	he Transportation Problem, including the general definition, the general model, and solution methods such as the North-West Corner Method, the Least Cost Method, and Vogel's Approximation Method, as well as optimal solution methods such as the Stepping Stone Method and the MODI (Modified Distribution) Method			
Week eight	Applications and Examples of Transportation Problems in the QSB Program, with Results Analysis and Recommendations			
Week Nine	The Assignment Problem, including the general definition, the general model, and solution methods such as the Hungarian Method and the Unit Method			
Week Ten	Applications and Examples of Assignment Problems in the QSB Program, with Results Analysis and Recommendations			
Week Eleven	Project Networks, including the general definition of project networks; how to construct a project network; critical path calculation; time-risk analysis; using the Critical Path Method (CPM) and PERT; and cost–time trade-off.			
Twelfth week	Applications and Examples of Project Networks in the QSB Program, with Results Analysis and Recommendations			
Thirteenth week	**Game Theory**, including the general definition, types of games, and solution methods such as Saddle Point, Dominance, Algebraic Solution, and Graphical Solution.			
Fourteenth week	Applications and Examples of Game Theory in the QSB Program, with Results Analysis and Recommendations			
Fifteenth week	Midterm Examination			

Learning and Teaching Resources				
	Text	Available in the Library?		

Required Texts	مقدمة في بحوث العمليات وتطبيقاتها ببرنامج.1 (SB: الطبعة الاولى:ا.م.د.عمر محمد ناصر واخرون 2.Introduction to Operations Resesrch: Eighth Edition:Hillie Lieberman:2005	
Recommended Texts	تطبيقات وتحليلات النظام الكمي للاعمال .1 :أ.د.مروان:الطبعة الثانية عبد الحميد عاشور ,ا.م.د.عمر محمد ناصر العشاري,ا.د.خالد ضاري عباس:2024	
Websites		

Grading chart					
Group	Appreciation	Grade	Marks %	Definition	
	privilege	A – Excellent	90 – 100	Outstanding Performance	
Success	Very good	B - Very Good	80 – 89	Above average with some errors	
Group (50 - 100)	Good	C – Good	70 – 79	Sound work with notable errors	
	medium	D – Satisfactory	60 – 69	Fair but with major shortcomings	
	Acceptable	E – Sufficient	50 – 59	Work meets minimum criteria	
Fail Group (0 – 49)	Deposit (in processing)	FX – Fail	(45-49)	More work required but credit awarded	
(0 – 49)	Failure	F – Fail	(0-44)	Considerable amount of work	

Decimal points greater or less than 0.5 will be rounded to the highest or lowest full mark (for example, a 54.5 mark will be rounded to 55, while a 54.4 mark will be rounded to 54). The university has a policy of not tolerating " "near scroll failure" so the only modification of the tags granted by the original tag(s) will be the auto rounding shown above.