# FUNDAMENTALS OF WELDING

- 1. Overview of welding technology
- 2. The weld joint
- **3**. Physics of welding
- 4. Features of a fusion welded joint

# Joining and Assembly Distinguished

- Joining welding, brazing, soldering, and adhesive bonding
- These processes form a permanent joint between parts
- Assembly mechanical methods (usually) of fastening parts together
- Some of these methods allow for easy disassembly, while others do not

# Welding

Joining process in which two (or more) parts are coalesced at their contacting surfaces by application of heat and/or pressure

- Many welding processes are accomplished by heat alone, with no pressure applied
- Others by a combination of heat and pressure
- Still others by pressure alone with no external heat
- In some welding processes a *filler* material is added to facilitate coalescence

# Why Welding is Important

- Provides a permanent joint
  - Welded components become a single entity
- Usually the most economical way to join parts in terms of material usage and fabrication costs
  - Mechanical fastening usually requires additional hardware (e.g., screws) and geometric alterations of the assembled parts (e.g., holes)
- Not restricted to a factory environment
  - Welding can be accomplished "in the field"

# Limitations and Drawbacks of Welding

- Most welding operations are performed manually and are expensive in terms of labor cost
- Most welding processes utilize high energy and are inherently dangerous
- Welded joints do not allow for convenient disassembly
- Welded joints can have quality defects that are difficult to detect



# **Faying Surfaces in Welding**

- The part surfaces in contact or close proximity that are being joined
- Welding involves localized coalescence of the two metallic parts at their faying surfaces
- Welding is usually performed on parts made of the same metal
  - However, some welding operations can be used to join dissimilar metals

# **Types of Welding Processes**

- Some 50 different types of welding processes have been catalogued by the American Welding Society (AWS)
- Welding processes can be divided into two major categories:
  - Fusion welding
  - Solid state welding

# **Fusion Welding**

Joining processes that melt the base metals

- In many fusion welding operations, a filler metal is added to the molten pool to facilitate the process and provide bulk and added strength to the welded joint
- A fusion welding operation in which no filler metal is added is called an *autogenous* weld

# Some Fusion Welding Processes

- Arc welding (AW) melting of the metals is accomplished by an electric arc
- Resistance welding (RW) melting is accomplished by heat from resistance to an electrical current between faying surfaces held together under pressure
- Oxyfuel gas welding (OFW) melting is accomplished by an oxyfuel gas such as acetylene

# Arc Welding

 Basics of arc welding: (1) before the weld; (2) during the weld, the base metal is melted and filler metal is added to molten pool; and (3) the completed weldment



# Solid State Welding

Joining processes in which coalescence results from application of pressure alone or a combination of heat and pressure

- If heat is used, temperature is below melting point of metals being welded
- No filler metal is added in solid state welding

# Some Solid State Welding Processes

- Diffusion welding (DFW) –coalescence is by solid state fusion between two surfaces held together under pressure at elevated temperature
- Friction welding (FRW) coalescence by heat of friction between two surfaces
- Ultrasonic welding (USW) coalescence by ultrasonic oscillating motion in a direction parallel to contacting surfaces of two parts held together under pressure

# **Principal Applications of Welding**

- Construction buildings and bridges
- Piping, pressure vessels, boilers, and storage tanks
- Shipbuilding
- Aircraft and aerospace
- Automotive
- Railroad

# Welder and Fitter

- The welder manually controls the path or placement of welding gun
- Often assisted by second worker, called a *fitter*, who arranges the parts prior to welding
  - Welding fixtures and positioners are used to assist in this function

# The Safety Issue

- Welding is inherently dangerous to human workers
  - High temperatures of molten metals
  - In gas welding, fuels (e.g., acetylene) are a fire hazard
  - Many welding processes use electrical power, so electrical shock is a hazard

# **Special Hazards in Arc Welding**

- Ultraviolet radiation emitted in arc welding is injurious to human vision
  - Welder must wear special helmet with dark viewing window
    - Filters out dangerous radiation but welder is blind except when arc is struck
- Sparks, spatters of molten metal, smoke, and fumes
  - Ventilation needed to exhaust dangerous fumes from fluxes and molten metals

# Automation in Welding

- Because of the hazards of manual welding, and to increase productivity and improve quality, various forms of mechanization and automation are used
  - Machine welding mechanized welding under supervision and control of human operator
  - Automatic welding equipment performs welding without operator control
  - Robotic welding automatic welding implemented by industrial robot







# The Weld Joint

The junction of the edges or surfaces of parts that have been joined by welding

- Two issues about weld joints:
  - Types of joints
  - Types of welds used to join the pieces that form the joints

# Five Types of Joints

(a) Butt joint, (b) corner joint, (c) lap joint, (d) tee joint, and (e) edge joint



# **Types of Welds**

- Each of the preceding joints can be made by welding
- Other joining processes can also be used for some of the joint types
- There is a difference between joint type and the way it is welded - the weld type

#### Fillet Weld

- Used to fill in the edges of plates created by corner, lap, and tee joints
- Filler metal used to provide cross section in approximate shape of a right triangle
- Most common weld type in arc and oxyfuel welding
- Requires minimum edge preparation

#### **Fillet Welds**

 (a) Inside single fillet corner joint; (b) outside single fillet corner joint; (c) double fillet lap joint; (d) double fillet tee joint (dashed lines show the original part edges)



#### **Groove Welds**

- Usually requires part edges to be shaped into a groove to facilitate weld penetration
- Edge preparation increases cost of parts fabrication
- Grooved shapes include square, bevel, V, U, and J, in single or double sides
- Most closely associated with butt joints

#### **Groove Welds**

(a) Square groove weld, one side; (b) single bevel groove weld; (c) single V-groove weld; (d) single U-groove weld;
(e) single J-groove weld; (f) double V-groove weld for thicker sections (dashed lines show original part edges)



#### Plug Weld and Slot Weld

(a) Plug weld and (b) slot weld



#### Spot Weld and Seam Weld

Fused section between surfaces of two sheets or plates: (a) spot weld and (b) seam weld

- Used for lap joints
- Closely associated with resistance welding



# Flange Weld and Surfacing Weld

 (a) Flange weld and (b) surfacing weld used not to join parts but to deposit filler metal onto surface of a base part



# **Physics of Welding**

- Fusion is most common means of achieving coalescence in welding
- To accomplish fusion, a source of high density heat energy must be supplied to the faying surfaces
  - Resulting temperatures cause localized melting of base metals (and filler metal, if used)
- For metallurgical reasons, it is desirable to melt the metal with minimum energy but high heat densities

# **Power Density**

- Power transferred to work per unit surface area, W/mm<sup>2</sup> (Btu/sec-in<sup>2</sup>)
- If power density is too low, heat is conducted into work, so melting never occurs
- If power density too high, localized temperatures vaporize metal in affected region
- There is a practical range of values for heat power density within which welding can be performed

# Comparisons Among Welding Processes

- Oxyfuel gas welding (OFW) develops large amounts of heat, but power density is relatively low because heat is spread over a large area
  - Oxyacetylene gas, the hottest OFW fuel, burns at a top temperature of around 3500°C (6300°F)
- Arc welding produces high power density over a smaller area, resulting in local temperatures of 5500° to 6600°C (10,000° to 12,000°F)

# Power Densities for Welding Processes

| Welding process | <u>W/mm<sup>2</sup></u> | (Btu/sec-in <sup>2</sup> ) |  |
|-----------------|-------------------------|----------------------------|--|
| Oxyfuel         | 10                      | (6)                        |  |
| Arc             | 50                      | (30)                       |  |
| Resistance      | 1,000                   | (600)                      |  |
| Laser beam      | 9,000                   | (5,000)                    |  |
| Electron beam   | 10,000                  | (6,000)                    |  |

# **Power Density**

Power entering surface divided by corresponding surface area:

$$PD = \frac{P}{A}$$

where PD = power density, W/mm<sup>2</sup> (Btu/sec-in<sup>2</sup>); P = power entering surface, W (Btu/sec); and A = surface area over which energy is entering, mm<sup>2</sup> (in<sup>2</sup>)

#### Example 29.1 Power Density in Welding

A heat source transfers 3000 W to the surface of a metal part. The heat impinges the surface in a circular area, with intensities varying inside the circle. The distribution is as follows: 70% of the power is transferred within a circle of diameter = 5 mm, and 90% is transferred within a concentric circle of diameter = 12 mm. What are the power densities in (a) the 5-mm diameter inner circle and (b) the 12-mm-diameter ring that lies around the inner circle?

**Solution:** (a) The inner circle has an area  $A = \frac{\pi(5)^2}{4} = 19.63 \text{ mm}^2$ .

The power inside this area  $P = 0.70 \times 3000 = 2100$  W.

Thus the power density  $PD = \frac{2100}{19.63} = 107 \text{ W/mm}^2$ .

(b) The area of the ring outside the inner circle is  $A = \frac{\pi (12^2 - 5^2)}{4} = 93.4 \text{ mm}^2$ . The power in this region P = 0.9 (3000) - 2100 = 600 W.

The power density is therefore  $PD\frac{600}{93.4} = 6.4 \text{ W/mm}^2$ .

**Observation:** The power density seems high enough for melting in the inner circle, but probably not sufficient in the ring that lies outside this inner circle.

# Unit Energy for Melting

Quantity of heat required to melt a unit volume of metal

- $U_m$  is the sum of:
  - Heat to raise temperature of solid metal to melting point
    - Depends on volumetric specific heat
  - Heat to transform metal from solid to liquid phase at melting point
    - Depends on heat of fusion
    - Melting point

| selected metals.     |                        |                         |                  |                        |                         |
|----------------------|------------------------|-------------------------|------------------|------------------------|-------------------------|
|                      | Melting<br>Temperature |                         |                  | Melting<br>Temperature |                         |
| Metal                | °K <sup>a</sup>        | ° <b>R</b> <sup>b</sup> | Metal            | °K <sup>a</sup>        | ° <b>R</b> <sup>b</sup> |
| Aluminum alloys      | 930                    | 1680                    | Steels           |                        |                         |
| <br>Cast iron        | 1530                   | 2760                    | Low carbon       | 1760                   | 3160                    |
| Copper and alloys    |                        |                         | Medium carbon    | 1700                   | 3060                    |
| Pure                 | 1350                   | 2440                    | High carbon      | 1650                   | 2960                    |
| Brass, navy          | 1160                   | 2090                    | Low alloy        | 1700                   | 3060                    |
| Bronze (90 Cu–10 Sn) | 1120                   | 2010                    | Stainless steels |                        |                         |
| Inconel              | 1660                   | 3000                    | Austenitic       | 1670                   | 3010                    |
| Magnesium            | 940                    | 1700                    | Martensitic      | 1700                   | 3060                    |
| Nickel               | 1720                   | 3110                    | Titanium         | 2070                   | 3730                    |
|                      |                        |                         |                  |                        |                         |

**TABLE 29.2** Melting temperatures on the absolute temperature scale for selected metals.

Based on values in [2].

<sup>a</sup>Kelvin scale = Centigrade (Celsius) temperature + 273.

<sup>b</sup>Rankine scale = Fahrenheit temperature + 460.

The quantity of heat for melting can be estimated by the following equation:

$$U_m = KT_m^2 \tag{29.2}$$

where  $U_m$  = the unit energy for melting (i.e., the quantity of heat required to melt a unit volume of metal starting from room temperature), J/mm<sup>3</sup> (Btu/in<sup>3</sup>);  $T_m$  = melting point of the metal on an absolute temperature scale, °K (°R); and K = constant whose value is 3.33 × 10<sup>-6</sup> when the Kelvin scale is used (and  $K = 1.467 \times 10^{-5}$  for the Rankine temperature scale). Absolute melting temperatures for selected metals are presented in Table 29.2.

# Heat Transfer Mechanisms in Welding

- Not all of the input energy is used to melt the weld metal
  - 1. Heat transfer efficiency  $f_1$  actual heat received by workpiece divided by total heat generated at source
  - 2. Melting efficiency  $f_2$  proportion of heat received at work surface used for melting
    - The rest is conducted into work metal

# Figure clarify heat transfer mechanisms in fusion welding



FIGURE 29.8 Heat transfer mechanisms in fusion welding.

#### Heat Available for Welding

$$H_w = f_1 f_2 H$$

where  $H_w$  = net heat available for welding;  $f_1$  = heat transfer efficiency;  $f_2$  = melting efficiency; and H = total heat generated by welding process

# Heat Transfer Efficiency $f_1$

Proportion of heat received at work surface relative to total heat generated at source

- Depends on welding process and capacity to convert power source (e.g., electrical energy) into usable heat at work surface
  - Oxyfuel gas welding processes are relatively inefficient
  - Arc welding processes are relatively efficient

# Melting Efficiency $f_2$

Proportion of heat received at work surface used for melting; the rest is conducted into the work

- Depends on welding process but also thermal properties of metal, joint shape, and work thickness
  - Metals with high thermal conductivity, such as aluminum and copper, present a problem in welding because of the rapid dissipation of heat away from the heat contact area

# **Energy Balance Equation**

 Net heat energy into welding operation equals heat energy required to melt the volume of metal welded

$$H_w = U_m V$$

where  $H_w$  = net heat energy delivered to operation, J (Btu);  $U_m$  = unit energy required to melt the metal, J/mm<sup>3</sup> (Btu/in<sup>3</sup>); and V = volume of metal melted, mm<sup>3</sup> (in<sup>3</sup>)

# **Rate Balance Equation**

Most welding operations are rate processes; that is, the net heat energy  $H_w$  is delivered at a given rate, and the weld bead is made at a certain travel velocity. It is therefore appropriate to express a rate balance equation as:

$$R_{Hw} = U_m R_{WV} \tag{29.5}$$

where  $R_{Hw}$  = rate of heat energy delivered to the operation for welding, J/s = W (Btu/min); and  $R_{WV}$  = volume rate of metal welded, mm<sup>3</sup>/s (in<sup>3</sup>/min). In the welding of a continuous bead, the volume rate of metal welded is the product of weld area  $A_w$  and travel velocity v. Substituting these terms into the above equation, the rate balance equation can now be expressed as

$$R_{Hw} = f_1 f_2 R_H = U_m A_w v \tag{29.6}$$

where  $f_1$  and  $f_2$  are the heat transfer and melting factors;  $R_H$  = rate of input energy generated by the welding power source, W (Btu/min);  $A_w$  = weld cross-sectional area, mm<sup>2</sup> (in<sup>2</sup>); and v = the travel velocity of the welding operation, mm/s (in/min). In Chapter 30, we examine how the power density in Eq. (29.1) and the input energy rate for Eq. (29.6) are generated for some of the individual welding processes.

#### Example 29.2 Welding Travel Speed

The power source in a particular welding setup generates 3500 W that can be transferred to the work surface with a heat transfer factor = 0.7. The metal to be welded is low carbon steel, whose melting temperature, from Table 29.2, is 1760°K. The melting factor in the operation is 0.5. A continuous fillet weld is to be made with a cross-sectional area =  $20 \text{ mm}^2$ . Determine the travel speed at which the welding operation can be accomplished.

**Solution:** Let us first find the unit energy required to melt the metal  $U_m$  from Eq. (29.2).

$$U_m = 3.33(10^{-6}) \times 1760^2 = 10.3 \text{ J/mm}^3$$

Rearranging Eq. (29.6) to solve for travel velocity, we have  $v = \frac{f_1 f_2 R_H}{U_m A_w}$ , and solving for the conditions of the problem,  $v = \frac{0.7 (0.5) (3500)}{10.3 (20)} = 5.95$  mm/s.

#### **Typical Fusion Welded Joint**

 Cross section of a typical fusion welded joint: (a) principal zones in the joint, and (b) typical grain structure



# Features of Fusion Welded Joint

Typical fusion weld joint in which filler metal has been added consists of:

- Fusion zone
- Weld interface
- Heat affected zone (HAZ)
- Unaffected base metal zone

#### Heat Affected Zone

Metal has experienced temperatures below melting point, but high enough to cause microstructural changes in the solid metal

- Chemical composition same as base metal, but this region has been heat treated so that its properties and structure have been altered
  - Effect on mechanical properties in HAZ is usually negative
    - It is here that welding failures often occur