Computer Science Department

1st Class: Mathematics

Lecture 3. Functions

Prof. Dr. Ruma Kareem K. Ajeena

Dr. Suhad Ahmed Ahmed

ا.د. رومی کریم خضر عجینة & مدبسهاد احمد احمد

College of Education for Pure Science - Ibn
Al-Haitham

University of Baghdad

Functions

Definition. A function from a set T to a set S is a rule that assigns a unique element $f(x) \in S$ for each element $x \in T$.

- The set T of all possible values is called **domain** of the function.
- The set of all values of f(x) as x varies in T is called the **range** of the function.

Some Examples of Functions:

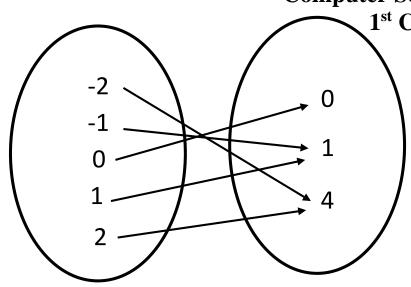
Example 1. $f(x) = x^2$ is a function.

If the domain f is [-2,2] then

f(-2) = 4, $f(-1) \ne 1$, f(0) = 0, f(1) = 1 and f(2) = 4. So the range is $\{0,1,4\}$.

Computer Science Department

1st Class: Mathematics



Example 2. Find the domain and range for the following functions.

1.
$$f(x) = x^2$$
. 2. $f(x) = \sqrt{x}$. 3. $\sqrt{4 - x}$.

3.
$$f(x) = \sqrt{x}$$
. 4. $f(x) =$

2.
$$f(x) = \sqrt{1 - x^2}$$
.

Solution:

- 1. The domain is $(-\infty, \infty)$, since for any real number x gives the value $f(x) = y = x^2$. The range of $y = x^2$ of any real number x is nonnegative and zero, so $y \ge 0$. Thus, the range is $[0, \infty)$.
- 2. The domain is $(-\infty, 0) \cup (0, \infty)$. The range $(-\infty, 0) \cup (0, \infty)$.

3

- 3. The domain is $[0, \infty)$. The range is $[0, \infty)$.
- 4. In $f(x) = \sqrt{4 x}$, the quantity $4 x \ge 0$, so $x \le 4$. The domain is $(-\infty, 4]$. The range of $\sqrt{4 x}$ is the set of all nonnegative number, so it is $[0, \infty)$.
- 5. The domain is [-1,1]. The range is [0,1].

Even and Odd Functions

Definition. (Even and Odd Functions). A function y = f(x) is an even function of x if f(-x) = f(x), and its odd function of x if f(-x) = -f(x), $\forall x$ in domain.

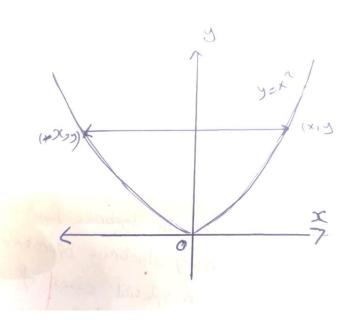
Example. Recognizing Even and Odd Functions:

$$f(x) = x^2$$
, $f(x) = x^2 + 1$, $f(x) = x^3$, $f(x) = x$,

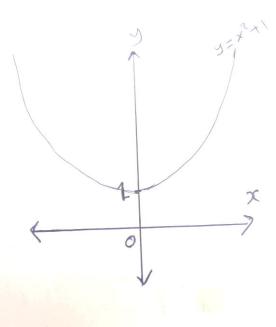
$$f(x) = x+1.$$

Solution.

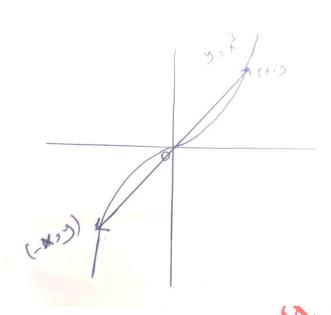
1. $f(x) = x^2$ is an even fun., since $(-x)^2 = x^2$, $\forall x$ in D. And it is symmetry about y-axis.



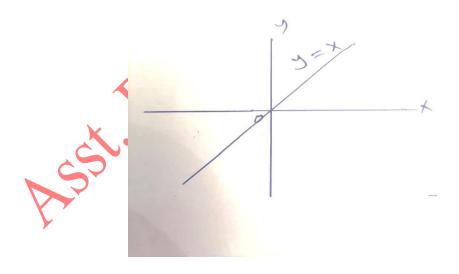
2. $f(x) = x^2 + 1$ is an even fun., since $(-x)^2 + 1 = x^2 + 1$, \forall x in D. And it is symmetry about y-axis.



3. $f(x) = x^3$ is an odd fun., since $(-x)^3 = -x^3$, $\forall x$ in D. And it is symmetry about origin.



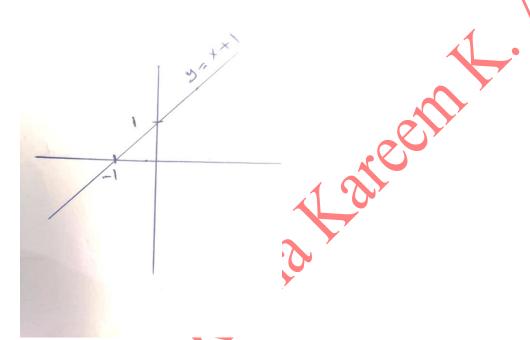
4. f(x) = x is an odd func, since (-x) = -x, $\forall x$ in D. And it is symmetry about origin.



5. f(-x) = -x+1 but -f(x) = -x-1. It is not odd.

 $f(-x) = -x+1 \neq x+1$, $\forall x \neq 0$. It is not even.

land on J



Types of Functions

1. Polynomials. A function P is a polynomial if

$$P(x) = a_n x^n + a_{n\text{-}1} x^{n\text{-}1} + \ldots + a_1 x + a_0$$

Where n is a nonnegative integer and $a_0, a_1, ..., a_n$ are real constants which are called the coefficients of P(x). Note that:

- a. All polynomials have domain $(-\infty,\infty)$.
- b. If the leading coefficients $a_n \neq 0$ and n > 0 then n is called degree of P(x).
- c. Linear functions are polynomials
- d. Polynomials with degree 2 are written by

$$f(x) = ax^2 + bx + c$$

which are called quadratic functions.

2. Rational Functions. A rational function is a quotient of two polynomials:

$$f(x) = \frac{p(x)}{q(x)}$$

where p and q are polynomials. The domain of a rational function is the set of all real x for which $q(x) \neq 0$. For example, the function

$$f(x) = \frac{2x^2 - 3}{7x + 4}$$

is a rational function with domain $\{x: x \neq -4/7\}$.