

Computer Science Department 1st Class: Mathematics

AsLecture 1. Set Theory

Prof. Dr. Ruma Kareem K. Ajeena

Dr. Suhad Ahmed Ahmed

اد رومی کریم خضر عجینة & م.د. سهاد احمد احمد

College of Education for Pure Science - Ibn Al-Haitham University of Baghdad

ruma.k.kh@ihcoedu.uobaghdad.edu.iq

Suhad.a.a@ihcoedu.uobaghdad.edu.iq

A set is a collection of distinct objects.

For example: {1, 2, 3} is a set but {1, 1, 3} is not because 1 appears twice in the second collection. The second collection is called a multiset.

The set of natural numbers

$$N = \{1, 2, 3, 4....\}$$
. be written

The set of even integers can be written

{2n: n is an integer}.

The integers are the set of whole numbers, both positive and negative

$$Z = \{0, \pm 1, \pm 2, \pm 3, \ldots\}.$$

The set of rational numbers Q which is the set of all quotients of integers that can be written by

 $Q = \{x : x = p/q, \text{ where p,q are integers and } q \neq 0\}.$

Whereas, the irrational numbers is the set of not rational numbers. For example, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$.

Also, there is a set of real numbers R that is

R = set of all rational and irrational numbers.

Definition. The empty set is a set containing no objects. It is written as a pair of curly braces with nothing inside {} or by using the symbol Ø.

Definition. The set membership symbol \in is used to say that an object is a member of a set. It has a partner symbol \notin which is used to say an object is not in a set.

Definition. We say two sets are equal if they have exactly the same members.

Example. If

$$S = \{1, 2, 3\}$$

then $3 \in S$ and $4 \not\in S$. The set

$$T = \{2, 3, 1\}$$

is equal to S because they have the same members.

Definition. The cardinality of a set is its size. For a finite set, the cardinality of a set is the number of members it contains which is written |S|.

Example. For the set $S = \{1, 2, 3\}$ we show cardinality by writing |S| = 3.

Definition. The intersection of two sets S and T is the collection of all objects that are in both sets. It is written $S \cap T$.

$$S \cap T = \{x : (x \in S) \text{ and } (x \in T)\} \text{ or } S \cap T = \{x : (x \in S) \land (x \in T)\}.$$

Example. Suppose $S = \{1, 2, 3, 5\}$, $T = \{1, 3, 4, 5\}$, and $U = \{2, 3, 4, 5\}$. Then

$$S \cap T = \{1, 3, 5\}, S \cap U = \{2, 3, 5\}, \text{ and } T \cap U = \{3, 4, 5\}.$$

Definition. If A and B are sets and $A \cap B = \emptyset$ then we say that A and B are disjoint, or disjoint sets.

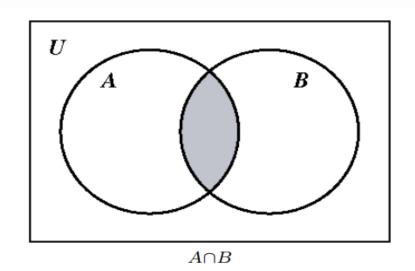
Definition. The union of two sets S and T is the collection of all objects that are in either set. It is written S U T which is defined by

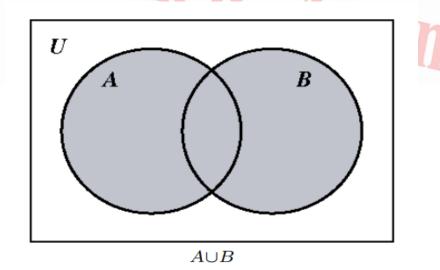
$$S \cup T = \{x : (x \in S) \text{ or } (x \in T)\} \text{ or } S \cup T = \{x : (x \in S) \lor (x \in T)\}.$$

Example. Suppose $S = \{1, 2, 3\}, T = \{1, 3, 5\}, \text{ and } U = \{2, 3, 4, 5\}.$ Then: $S \cup T = \{1, 2, 3, 5\}, S \cup U = \{1, 2, 3, 4, 5\}, \text{ and } T \cup U = \{1, 2, 3, 4, 5\}$

Definition. The universal set, at least for a given collection of set theoretic computations, is the set of all possible objects.

Venn Diagrams. A Venn diagram is a way of depicting the relationship between sets.





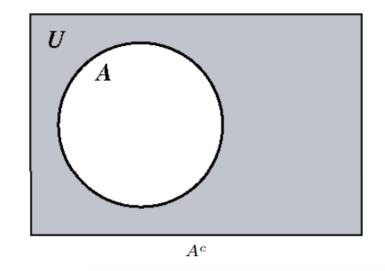
Definition. The compliment of a set S is the collection of objects in the universal set that are not in S. The compliment is written S^c .

$$S^c = \{x : (x \in U) \land (x \not\in S)\}.$$

Example.

- 1. Let the universal set be the integers. Then the compliment of the even integers is the odd integers.
- 2. Let the universal set be $\{1, 2, 3, 4, 5\}$, then the compliment of $S = \{1, 2, 3\}$ is $S^c = \{4, 5\}$ while the compliment of $T = \{1, 3, 5\}$ is $T^c = \{2, 4\}$.
- 3. Let the universal set be the letters $\{a, e, i, o, u, y\}$. Then $\{y\}^c = \{a, e, i, o, u\}$.

The Venn diagram for A^c is



Definition. The difference of two sets S and T is the collection of objects in S that are not in T . The difference is written S - T.

Definition. For two sets S and T we say that S is a subset of T if each element of S is also an element of T. In formal notation $S \subseteq T$ if for all $x \in S$ we have $x \in T$.

If $S \subseteq T$ then we also say T contains S which can be written $T \supseteq S$. If $S \subseteq T$ and $S \neq T$ then we write $S \subset T$ and we say S is a proper subset of T.

Example. If $A = \{a, b, c\}$ then A has eight different subsets: $\emptyset \{a\} \{b\} \{c\} \{a, b\} \{a, c\} \{b, c\} \{a, b, c\}.$

Notice that $A \subseteq A$ and in fact each set is a subset of itself. The empty set \emptyset is a subset of every set.

Proposition. Two sets are equal if and only if each is a subset of the other. In symbolic notation:

$$(A = B) \Leftrightarrow (A \subseteq B) \land (B \subseteq A).$$

aws Suppos.

Ma K. K. Ajeena Proposition. De Morgan's Laws Suppose that S and T are sets. De Morgan's Laws state that

(i)
$$(S \cup T)^c = S^c \cap T^c$$
, and

(ii)
$$(S \cap T)^c = S^c \cup T^c$$
.

H.W. 1

- 1. Suppose that the set $U = \{n : 0 \le n < 100\}$ of whole numbers as an universal set. Let P be the prime numbers in U, let E be the even numbers in U, and let $F = \{1, 2, 3, 5, 8, 13, 21, 34, 55, 89\}.$ Compute

 i. E^c , Prof. Dr. Ruma K. K. Ajeena

H.W. 2

Compute the subsets of $S = \{a, b, c, d\}$ with cardinality 2.

H.W. 3

Choose any finite sets S and T and show that

H.W. 4

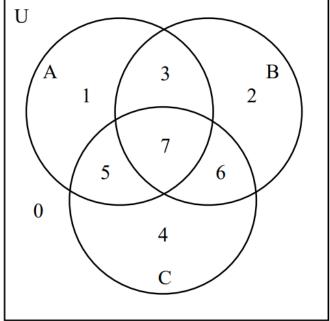
$$|S \cup T| = |S| + |T| - |S \cap T|.$$

If the Venn diagrams for the following sets is given by

Compute

1.
$$A - B$$

- 2. B-A
- 3. $A^c \cap B$
- 4. $A^c \cup B^c$.



Thank You Very Much for Your Attention