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Magnetic Scalar and Vector Potentials

We recall that some electrostatic field problems were simplified by relating the
electric Potential V to the electric field intensity E (E = —VV ). Similarly, we can
define a potential associated with magnetostatic field B.

In fact, the magnetic potential could be scalar V, and vector A.
To define Vi, and A involves two important identities:
VX (VW) =0 (1)
V-(WxA) =0 (2)

which must always hold for any scalar field \V and vector field A.

Magnetic Scalar Potential

Just as E = - W, we define the magnetic scalar potential Vy, (in amperes) as related
to magnetic intensity H according to

H=-VV, if J=0 (3)
The condition attached to this equation is important and will be explained.
Taking curl of both sides of eq. 3
VXH=—-VXxVl, (4)

Form of the Ampere’s law
VxH=] (5)
Combining eq. (4) and eq. (5) gives
J=VxH= -V XV, (6)
From identity 1, the curl of gradient potential must equal zero, then eq, 6 becomes
J=VxH= —V XV, =0 (7)

Thus the magnetic scalar potential V, is only defined in a region where J=0 as in
eg. (3).
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Vm satisfies Laplace's equation

We should also note that V, satisfies Laplace's equation just as electric potential V
does for electrostatic fields. To verify this:

B == ﬂoH
Taking divergence of both side
V-B=yp,V-H (8)

But V-:B=0 9
equatingeq. 8 &9

UoV-H=20 (10)
from eq.3 H= -V,
eq. 10 becomes

V-(=VV,)=0

That is V,,,satisfy Laplace's equation.

Vector magnetic potential

Vector magnetic potential exists in regions where J # 0 is present. It is defined in
such a way that its curl gives the magnetic flux density, that is,

B=VXxA

where A = vector magnetic potential (wb/m)
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Comparison between Electric Potential and Vector Magnetic Potential

As we saw in electrostatic, the electric potential V can be calculated for any charge
distributions. Similarly, in magnetostatic the VVector Magnetic Potential A can be
calculated for any current distributions.

Electric potential V

Vector magnetic potential A

Unit Volt V Unit Tesla m,
or Wb/ m
Point charge . 1 dq Element Ao Ho Iill
T 4mey) 1 current (Idl) CAm) o
Line 1 ndl |Line Uo [ 1dl
o Vo= nat . A=—|—=
distribution of L7 e, jl " carrying 4 ) r
charge (ndl) current [
Surface 1 o ds | Surface U [ KdS
distribution o | /5 = Zrg, L — |distribution | A=)
K
Volume 1 pdv | Volume Uo Jjdv
distribution p | " = P, jv —— | distribution A= fv —
J

Where: n is the line charge density (C/m) , o is the surface charge density

(C/m?) , p is the volume charge density (C/m3) , K is the surface current density
(Amp./m?) , ] is the volume current density (Amp./m3)
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Ex-1

The vector magnetic potential, A due to a direct current in a conductor in free
space is given by A = (x2 + y?)k uwb/m?. Determine the magnetic field
produced by the current element at (1, 2, 3).

Solution:

B=VxA
i j k

B — 10-6 |2 ] 0
B dx dy 0z

0 0 (x%?+ vy?)

— a 2 2 o a 2 2 o A -6
= [(@(x + vy )—0)1— <a(x + vy )—0)]+(0)k]><10
B = [2yi— 2xj] x 107% wbh/m?

Bat(123) = [2(2)i— 2(1)]] % 1076 wh/m?

B = (41— 2j) x 10~ wb/m?

Ex-2

A long, straight, current-carrying conductor ("wire"), calculate:
1- The magnetic vector potential A at point p at distance R away from it.
2- The magnetic flux density B at point p.

Solution

1- The magnetic vector potential A

Consider an element Zdz on the wire at a height z above the xy-plane. (The length
of this element is dz; the unit vector Z just indicates its direction). Consider also a
point P in the xy-plane at a distance r from the wire.



Magnetic Scalar and Vector Potentials H.H. Murbat

dz=T i
T ™ r

o P

The contribution to the magnetic vector potential is therefore

OOIdz
Of =W

because of the wire is infinite length, then the limit of integration from
(—ooto+ ).

e 0

The distance of P from the element dz is

r=42z%+ R? (2)

Sub.eq.2in1l
- ol dz
b=k | ©
0
From the fig.

Z
tanf = E — z = R tanb

dz = R sec?0 db

eg. 3 becomes

0 0

i —IACHOI R sec?6 d6 _IAC,uOIj‘ R sec®6 d6
’ 27T0 VR2tan26 + R? 21 ) RvVtan?0 + 1

0
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I’E#OIJ R sec?6 do
2T R secB
0

0

Mol
=k an sec6do 4)
0

the limit of integration should be from 0 to 6

l

0

-

0

l;—j sec 0do —k— In(sec 6 + tan 0)|3
0

A, = k% In(secd +tan ) — In(1)

— pro”
, =k o In(sec 6 + tan 6)

(5)

2T

R +R

~ Uol VI2+R? +1
=k In
2T R

~ Uol VIZ2+R? I
=k In

(5)

for > R , then eq. 5 becomes

Nh> g
I
&9
=
<
S
—
=
~——
&
=
~

0
v ( In(21) — ln(R))
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2- The magnetic flux B
Because of
B=VXA

We'll work in cylindrical coordinates, and the symbols (7, ¢, z) will denote the unit
orthogonal vectors.

104, aA(,,> . (6Ar aAZ) - <16(1‘A¢,) 1 aAT>2

9z  or r or ;ago

r do 0z

vxa=

The magnetic vector potential whose only z-component /TZ

U A = 104, 04, _
“roe ar?
Becouse of /TZ depends on radial r only, then E;if = 0, hence
VXA= 4 5
B ar 14
» ~ Mol
=k —(In2D) - In(R
A, =k 27T(ln( D — In(R))
0A Ul @
B—VXA——E = =@ %E(ln(Zl)— lTL(R))
_ Ul 0 1
B=V-¢ 21 Or (O R)
= Mol
B= 2nR<p

Which is the same result that we get from Biot-Savart’ and Amper’ laws.



