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Magnetic Scalar and Vector Potentials       

We recall that some electrostatic field problems were simplified by relating the 

electric Potential V to the electric field intensity E (𝑬 = −∇𝑉 ). Similarly, we can 

define a potential associated with magnetostatic field B.  

In fact, the magnetic potential could be scalar Vm and vector A.  

To define Vm and A involves two important identities: 

𝛻 × (∇𝑉 ) = 0                                        (1) 

 𝛻 ∙ (𝛻 × 𝐴) = 0                                      (2) 

which must always hold for any scalar field V and vector field A. 

 

Magnetic Scalar Potential  

Just as E = -V, we define the magnetic scalar potential Vm (in amperes) as related 

to magnetic intensity H according to 

𝐻 = − ∇𝑉𝑚        𝑖𝑓       𝐽 = 0                     (3) 

The condition attached to this equation is important and will be explained.  

Taking curl of both sides of eq. 3  

∇ × 𝐻 = − 𝛻 × ∇𝑉𝑚                      (4)  

 

Form of the Ampere’s law 

𝛻 × 𝐻⃑⃑ =  𝐽                                      (5) 

Combining eq. (4) and eq. (5) gives  

  𝐽 = 𝛻 × 𝐻⃑⃑ =   − 𝛻 × 𝛻𝑉𝑚                 (6)     

From identity 1, the curl of gradient potential must equal zero, then eq, 6 becomes 

  𝐽 = 𝛻 × 𝐻⃑⃑ =   − 𝛻 × 𝛻𝑉𝑚 = 0                         (7) 

Thus the magnetic scalar potential Vm is only defined in a region where J = 0 as in 

eq. (3).  
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Vm satisfies Laplace's equation 

We should also note that Vm satisfies Laplace's equation just as electric potential V 

does for electrostatic fields. To verify this: 

B = 𝜇0𝐻    

Taking divergence of both side  

∇ ∙ B = 𝜇0𝛻 ∙ 𝐻                        (8)  

 

But                                      ∇ ∙ 𝐵 = 0                                   (9)  

equating eq. 8 & 9 

𝜇0𝛻 ∙ 𝐻 = 0                                  (10) 

 

from eq.3                                 𝐻 = − 𝛻𝑉𝑚 

eq. 10 becomes 

𝛻 ∙ (− 𝛻𝑉𝑚) = 0 

 

 

That is 𝑉𝑚satisfy Laplace's equation. 

 

 

Vector magnetic potential 

Vector magnetic potential exists in regions where 𝐽 ≠ 0 is present. It is defined in 

such a way that its curl gives the magnetic flux density, that is, 

 

 

where A = vector magnetic potential (wb/m) 

 

 ∇2𝑉𝑚 = 0      (𝐽 = 0)                   (11)    

𝐁 = ∇ × 𝐀 
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Comparison between Electric Potential and Vector Magnetic Potential 

As we saw in electrostatic, the electric potential V can be calculated for any charge 

distributions. Similarly, in magnetostatic the Vector Magnetic Potential A can be 

calculated for any current distributions. 

 

 Vector magnetic potential A Electric potential V  

𝑇𝑒𝑠𝑙𝑎 ∙  𝑚,     

𝑜𝑟  𝑊𝑏/ 𝑚  

Unit Volt   V  Unit 

𝐴 =
𝜇0

4𝜋
∫

𝐼𝑑𝑙

𝑟
 

 

Element 

current (𝐼𝑑𝑙) 
𝑉 =

1

4𝜋𝜀0
∫

𝑑𝑞

𝑟
 

Point charge  

𝐴 =
𝜇0

4𝜋
∫

𝐼𝑑𝑙

𝑟
 

 

Line 

carrying 

current  𝑙 

𝑉𝑙 = 
1

4𝜋𝜀0
 ∫

 𝜂𝑑𝑙

𝑟𝑙

 

 

Line 

distribution of 

charge (𝜂𝑑𝑙) 

𝐴 =
𝜇0

4𝜋
∫

𝐾 𝑑𝑆

𝑟𝑆

 

 

Surface 

distribution 

K 

𝑉𝑠 = 
1

4𝜋𝜀0
 ∫

𝜎 𝑑𝑆

𝑟𝑆

 
Surface 

distribution 𝜎 

𝐴 =
𝜇0

4𝜋
 ∫

 𝐽𝑑𝑉

𝑟𝑉

 

  

Volume 

distribution 

𝐽 

𝑉𝑣 = 
1

4𝜋𝜀0
 ∫

 𝜌𝑑𝑉

𝑟𝑉

 
Volume 

distribution 𝜌 

 

Where: 𝜂  is the line charge density (C/m)    , 𝜎 is the surface charge density 

(C/m2)   , 𝜌 is the volume charge density (C/m3)   , 𝐾 is the surface current density 

(𝐴𝑚𝑝./m2)   , 𝐽 is the volume current density  (𝐴𝑚𝑝./m3)     
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Ex-1  

The vector magnetic potential, A due to a direct current in a conductor in free 

space is given by 𝐴 = (𝑥2 + 𝑦2)𝑘̂ 𝜇𝑤𝑏/𝑚2  . Determine the magnetic field 

produced by the current element at (1, 2, 3). 

 

Solution:  

𝐴 = (𝑥2 + 𝑦2)𝑘̂ 𝜇𝑤𝑏/𝑚2  

B = ∇ × 𝐴 

B = 10−6  ||

𝑖̂                      𝑗̂                     𝑘̂
𝜕

𝜕𝑥
                 

𝜕

𝜕𝑦
                  

𝜕

𝜕𝑧

0                    0      (𝑥2 + 𝑦2)

|| 

= [ (
𝜕

𝜕𝑦
(𝑥2 + 𝑦2) − 0) 𝑖̂ − (

𝜕

𝜕𝑥
(𝑥2 + 𝑦2) − 0) 𝑗̂ + (0)𝑘̂ ] × 10−6  

𝐵 = [ 2𝑦𝑖̂ −  2𝑥𝑗̂ ] × 10−6 𝑤𝑏/𝑚2 

𝐵 𝑎𝑡 (1,2,3) =  [ 2(2)𝑖̂ −  2(1)𝑗̂ ] × 10−6 𝑤𝑏/𝑚2 

𝐵 = (4𝑖̂ −  2𝑗̂) × 10−6 𝑤𝑏/𝑚2 

 

Ex-2 

A long, straight, current-carrying conductor ("wire"), calculate: 

1- The magnetic vector potential 𝐴  at point p at distance R away from it. 

2- The magnetic flux density 𝐵⃑  at point p. 

Solution  

1- The magnetic vector potential 𝐴  

Consider an element 𝑧̂𝑑𝑧 on the wire at a height z above the xy-plane. (The length 

of this element is dz; the unit vector 𝑧̂ just indicates its direction). Consider also a 

point P in the xy-plane at a distance r from the wire.  
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The contribution to the magnetic vector potential is therefore 

 𝐴 𝑧 = 𝑘̂
𝜇0

4𝜋
∫

𝐼𝑑𝑧

𝑟

∞

−∞

= 2 × 𝑘̂
𝜇0

4𝜋
∫

𝐼𝑑𝑧

𝑟

∞

0

= 𝑘̂
𝜇0

2𝜋
∫

𝐼𝑑𝑧

𝑟

∞

0

              (1)   

because of the wire is infinite length,  then the  limit of  integration from 

(− ∞ 𝑡𝑜 +   ∞  ).     

The distance of P from the element dz is 

𝑟 = √𝑧2 + 𝑅2                                            (2) 

Sub. eq. 2 in 1 

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
∫

𝑑𝑧

√𝑧2 + 𝑅2
 

∞

0

                              (3) 

From the fig. 

𝑡𝑎𝑛𝜃 =  
𝑧

𝑅
 → 𝑧 = 𝑅 𝑡𝑎𝑛𝜃 

𝑑𝑧 = 𝑅 𝑠𝑒𝑐2𝜃 𝑑𝜃 

eq. 3 becomes  

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
∫

𝑅 𝑠𝑒𝑐2𝜃 𝑑𝜃

√𝑅2𝑡𝑎𝑛2𝜃 + 𝑅2
 

∞

0

= 𝑘̂
𝜇0𝐼

2𝜋
∫

𝑅 𝑠𝑒𝑐2𝜃 𝑑𝜃

𝑅√𝑡𝑎𝑛2𝜃 + 1
  

∞

0
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= 𝑘̂
𝜇0𝐼

2𝜋
∫

𝑅 𝑠𝑒𝑐2𝜃 𝑑𝜃

𝑅 sec 𝜃
 

∞

0

 

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
∫  𝑠𝑒𝑐 𝜃 𝑑𝜃

∞

0

                    (4) 

the limit of integration should be from 0 to 𝜃   

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
∫  𝑠𝑒𝑐 𝜃 𝑑𝜃

𝜃

0

= 𝑘̂
𝜇0𝐼

2𝜋
  𝑙𝑛(𝑠𝑒𝑐 𝜃 + 𝑡𝑎𝑛 𝜃)|0

𝜃 

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
 𝑙𝑛(𝑠𝑒𝑐 𝜃 + 𝑡𝑎𝑛 𝜃) − 𝑙𝑛(1) 

𝐴 𝑧  = 𝑘̂
𝜇0𝐼

2𝜋
 𝑙𝑛(𝑠𝑒𝑐 𝜃 + 𝑡𝑎𝑛 𝜃)               (5) 

 

𝑠𝑒𝑐 𝜃 =  
1

𝑐𝑜𝑠 𝜃
=

1

𝑅
𝑟

=
𝑟

𝑅
= 

√𝑙2 + 𝑅2

𝑅
  

𝑡𝑎𝑛 𝜃 =  
𝑙

𝑅
 

 

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
 𝑙𝑛 (

√𝑙2 + 𝑅2

𝑅
+

𝑙

𝑅
)  

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
 𝑙𝑛 (

√𝑙2 + 𝑅2  + 𝑙

𝑅
)               (5)  

 

for ≫ 𝑅 , then eq. 5 becomes 

𝐴 𝑧 = 𝑘̂
𝜇0𝐼

2𝜋
 𝑙𝑛 ( 

2𝑙

𝑅
 )  = 𝑘̂  

𝜇0𝐼

2𝜋
( 𝑙𝑛(2𝑙) −  𝑙𝑛(𝑅)) 
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2- The magnetic flux 𝐵⃑  

Because of  

B = ∇ × A 

We'll work in cylindrical coordinates, and the symbols (𝑟, 𝜑, 𝑧) will denote the unit 

orthogonal vectors. 

∇ × A =  (
1

𝑟

𝜕𝐴𝑧

𝜕𝜑
− 

𝜕𝐴𝜑

𝜕𝑧
) 𝑟̂ + (

𝜕𝐴𝑟

𝜕𝑧
− 

𝜕𝐴𝑧

𝜕𝑟
) 𝜑̂ + (

1

𝑟

𝜕(𝑟𝐴𝜑)

𝜕𝑟
− 

1

𝑟

𝜕𝐴𝑟

𝜕𝜑
) 𝑧̂ 

 The magnetic vector potential whose only z-component 𝐴 𝑧 

∇ × A = 
1

𝑟

𝜕𝐴𝑧

𝜕𝜑
𝑟̂ −

𝜕𝐴𝑧

𝜕𝑟
𝜑̂ 

Becouse of 𝐴 𝑧  depends on radial r only, then 
𝜕𝐴𝑧

𝜕𝜑
= 0 , hence 

∇ × A =  −
𝜕𝐴𝑧

𝜕𝑟
𝜑̂ 

𝐴 𝑧  = 𝑘̂  
𝜇0𝐼

2𝜋
( 𝑙𝑛(2𝑙) −  𝑙𝑛(𝑅)) 

 

 𝐵 = 𝛻 × 𝐴 = −
𝜕𝐴 

𝜕𝑟
𝜑̂  = −𝜑̂ 

𝜇0𝐼

2𝜋

𝜕

𝜕𝑟
 ( 𝑙𝑛(2𝑙) −  𝑙𝑛(𝑅)) 

𝐵 = 𝛻 − 𝜑̂ 
𝜇0𝐼

2𝜋

𝜕

𝜕𝑟
 (0 − 

1

𝑅
) 

 

 

 

Which is the same result that we get from Biot-Savart’ and Amper’ laws. 

𝐵⃑ =  
𝜇0𝐼

2𝜋𝑅
𝜑̂ 


