Assay of Hydrogen Peroxide

H2O2: Mwt.=34.02 gm/mole Different H2O2 solution: 30%,27%w/w and 6%, 3%w/v

- H2O2 is slightly more viscous than water.
- Aqueous solution of H₂O₂ colorless and odorless. Rapidly decomposes when contact with organic matter and certain metals; Cu, Fe, Mn and if allowed to stay in alkaline solution. $2H_2O_2 \rightarrow O_2 + H_2O$

• In acidic solution Fe²⁺ is oxidized to Fe³⁺ (H₂O₂ acting as an oxidizing agent):

$$2 \text{ Fe}^{2+} + \text{H}_2\text{O}_2 + 2\text{H}^+ \rightarrow 2 \text{ Fe}^{3+} + 2\text{H}_2\text{O}$$

 hydrogen peroxide acts as a reducing agent in its reaction with KMnO₄ in our experiment.

$$2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O_3$$

Uses:

It is a *disinfectant* or *antiseptic* for treating wounds for its antimicrobial activity.

it is an effective *cleaning agent* prevents infection transmission in the hospital environment.

Procedure:

 $\approx 0.1 \text{N KMnO}_4$

the titrant.

The buret contains

10ml of unknown 25ml of D.W. 5ml of 50%v/v H2SO4

This flask contains the solution to be titrated and the indicator.

End point: colorless → pink

Notes:

- 1. We make the media acidic to;
- Prevent decomposition of H2O2
- Prevent reaction of $KMnO_4 \longrightarrow MnO_2$
- Increase oxidizing power of KMnO₄
- 2. Titration should be done slowly

Chemical principle:

 $2KMnO_4 + 5H_2 O_2 + 3H_2 SO_4 \longrightarrow K_2 SO_4 + 2MnSO_4 + 5O_2 + 8H_2 O_4 + 2MnSO_4 + 2MnSO_4 + 5O_2 + 8H_2 O_4 + 2MnSO_4 + 2MnSO_5 +$

* You must write the oxidation and reduction equations to calculate the eqwt. for both $KMnO_4 \& H_2O_2$.

Chemical factor:

According to the chemical equation;

2Mwt of KMnO₄ \equiv 5Mwt of H₂O₂

then complete the derivation of the Ch. Factor.

The Chemical factor is equal to:

1ml of 0.1N KMnO₄ \equiv 0.001701gm of H₂O₂

- Calculation:
- Correct the **volume** of KMnO₄ NxV = N'xV' (corrected)
- Multiply the corrected volume by the Ch. Factor.
 to get the weight (wt.) of H₂O₂
- the %w/v of H₂O₂ = wt. /10 x 100

 There is <u>2 methods</u> to calculate the concentration of hydrogen peroxide in commercial products:

1. %W/V:

10ml of concentrated sol. was diluted to 200ml with D.W. \longrightarrow Then 20ml is taken from the dil. one and titrated with approximately 0.1N KMnO₄

conc.	<u>diluted</u>	
10	200	x = 20X10/200 = 1ml of conc. sol.
X	20	(original sol.)

Correct the volume of $KMnO_4 = Vol.$

Vol. x ch. Factor =wt. of H_2O_2 in $\underline{1ml}$.

Then calculate %w/v

2. Volume strength of the solution:

Decomposition occurs according to this equation:

$$2 H_2O_2 \longrightarrow 2 H_2O + O_2$$

<u>Example</u>: if the %w/v of H_2O_2 is <u>8.5%w/v</u> *i.e.* It contains 8.5 gm of H_2O_2 in 100ml solution.

$$2 \text{ H}_2\text{O}_2$$
 → 2 H₂O + O_2
 $2 \approx 34 \text{gm mwt}$. 22400ml $y = 28 \text{ml of O}_2$
 0.085gm y

So the *volume strength* of the sample is 28.