Balancing Redox Reactions

redox reaction

Fe + Cu²⁺ → Fe²⁺ + Cu

electron transfer occurs

redox reaction

Fe + $Cu^{2+} \rightarrow Fe^{2+} + Cu$

oxidation

(lost two electrons)

redox reaction

Fe + $Cu^{2+} \rightarrow Fe^{2+} + Cu$

reduction

(gained two electrons)

Simple redox reaction

To balance this reaction we just look at electrical charges

redox reaction

Fe + Cu²⁺ → Fe²⁺ + Cu

iron transfers two electrons to the copper ion

Another Redox Reaction Firstly divide into half reactions

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

 $Fe^{2+} \rightarrow Fe^{3+}$

Loss of one electron

$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2} \to \operatorname{Cr}^{3+}$$

Balance elements other than H and O

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

$$Fe^{2+} \rightarrow Fe^{3+}$$

$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2} \to 2\operatorname{Cr}^{3+}$$

Balance O with water molecules

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

$$Fe^{2+} \rightarrow Fe^{3+}$$

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$$

Balance H with hydrogen ions

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

$$Fe^{2+} \rightarrow Fe^{3+}$$

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

$$Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$$

Balance charge with electrons

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

$$Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O$$

$$-2 + 14(1) = 12$$

$$2(3) = 6$$

Balance charge with electrons

$$Cr_{2}O_{7}^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

reduction half-reaction

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-} \qquad Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

oxidation half-reaction

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

Make the electron numbers equal

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

$$(Fe^{2+} \rightarrow Fe^{3+} + e^{-})6$$

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O_7^{3-}$$

Make the electron numbers equal

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

 $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-}$

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

Combine the half reactions

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

oxidation half-reaction

$$6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-}$$

reduction half-reaction

(i)

$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+} + 6e^-$$

Balanced reaction

$$Cr_2O_7^{2-} + Fe^{2+} \rightarrow Cr^{3+} + Fe^{3+}$$

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$$