Group Theoretical Analysis

The character table:

* Character table:

Each point group has its character table.

Def.: The character table describe all the molecular motions $(T_{3N} = T_{Rot} + T_{trans.} + T_{vib})$ in terms of symmetry blocks (A, B, E, T ... etc).

Example:

H₂O, SO₂ and many other molecules belong to C_2V P.G and therefore, the C_2V character table is used to describe their molecular motions.

C₂V-character table

$C_2 v$	Ι	C ₂	$\sigma_{\rm v}$	σ_{v} '	IR	Raman
A_1	1	1	1	1	Tz	x^2-y^2, z^2
A2	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	T_x, R_y	ZX
B ₂	1	-1	-1	1	T _y , R _x	yz

 A_1 , A_2 , B_1 and B_2 are symmetry blocks, describe each of the molecular motions in relation to each symmetry element.

• The characters of the irreducible representations can describe the ways in which certain vector properties are transformed by the operations of the group

z ty	Operation	z becomes	In matrix notation
2	Е	z	[+1]z
	C_2	z	[+1] z
/	σ_v	z	[+1] z
	σ,.'	z	[+1] z
C_{2v}	$E C_2 \sigma_v \sigma_v$	<u>:</u>	
A_1	1 1 1 1	z	

× ×		Operation	x becomes	In matrix notation
x x		E	x	[+1] x
		C_2	-x	[-1] x
'		σ_v	x	[+1] x
		σ_{v}'	-x	[-1] x
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x		

7		Operation	R _z becomes	In matrix notation		z	,	Operation	y becomes	In matrix notation
Ť 🖌 y		E	R,	[+1] R ,		y		Ε	у	[+1] y
		C_2	R,	[+1] R ,			x	C_2	-у	[-1] y
R		σ_v	- R ,	[-1] R _z				σ_{ν}	-у	[-1] y
Y 1		σ_{v}'	$-\mathbf{R}_{z}$	[-1] R _z				σ_{v}'	у	[+1] y
	$\begin{array}{c c} C_{2\nu} & E \\ \hline A_2 & 1 \end{array}$	$C_2 \sigma_v \sigma_v$ 1 -1 -1	R _z	$C_{2\nu}$ E	$C_2 \sigma_v$	σ_{v}'	$\begin{array}{c c} C_{2v} & E \\ \hline B_2 & 1 \end{array}$	$\begin{array}{ccc} C_2 & \sigma_v & \sigma_v' \\ -1 & -1 & 1 \end{array}$	y	
			2. 25	$egin{array}{cccc} A_1 & 1 & & \ A_2 & 1 & & \ B_1 & 1 & & \ B_2 & 1 & & \ \end{array}$	1 1 1 -1 -1 1 -1 -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

• The character +1 and -1 indicate that:

+1 keeps the symmetry element during the molecular motion while -1 breaks it.

So A_1 is totally symmetric motions where doesn't break any symmetry element during the motion, but A_2 , B_1 and B_2 are anti-symmetric motions, they do break one or more of the symmetry elements during the motions. **Note that:** A_1 , A_2 , B_1 and B_2 are monodegenerate motions.

• Tx, Ty, and Tz are the three translational motions for any C_2v molecule and they are expressed in terms of symmetry blocks as follow:

$$T_{\text{trans}} = A1 + B1 + B2$$

= 3 translational motion

• Rx, Ry and Rz are the three rotational motions for any C2v molecule

 $T_{Rot} = A_2 + B_1 + B_2$

= 3 rotational motion

So all non-linear $C_2 v$ have $3T_{trans} + 3T_{Rot.}$

i.e $(T_t + T_R)$ are constant but T_{vib} depend on no. of motions (total no.) i.e $[3N-(T_t+T_R)]$.

• In the table

(T) means the motion is IR-active while x^2 , y^2 , z^2 , xy, xz, yz is Ramanactive vibrations.

to be IR-active, it must have dipole moment changes during vibrational. but to be Raman active, it must have bond-polarizability changes

• Some motion have IR and Raman active

but some motion have IR inactive and Raman active or vise versa.

To determine this T_{vib} from character table of $C_2 v$ for $H_2 O$

 $T_{vib} = T_{3N} - (T_t + T_{Rot})$

 $\therefore T_{vib} = (3A_1 + A_2 + 2B_1 + 3B_2) - (A_1 + A_2 + 2B_1 + 2B_2)$

= 2A1 + B2 = 3 vibrational motion

i.e. T_{vib} of $H_2O = 2A_1 + B_2$ of all C_2V and A_1 are (IR and R) active B_2 are (IR and R) active

Η Η

The Character table of C₃v

NH₃, PCl₃ and many other molecules belong to C_3v P.G. and therefore, the C_3v character table is used to describe their molecular motions.

C₃v-character table

C ₃ v	Ι	2C ₃	$3\sigma_v$	IR	Raman
A_1	1	1	1	T _Z	x^2+y^2, z^2
A2	1	1	-1	R _Z	
E	2	-1	0	$(T_x, T_y) \& (R_x, R_y)$	$(x^2-y^2, xy) \& (yz, zx)$

A₁: is monodegenerate motion, symmetric and IR and Raman active.

- A₂: is monodegenerate motion, antisymmetric and IR and Raman inactive.
- E: is doubly degenerate motion (each E represent two motions), antisymmetric and IR and Raman active.

 $T_{trans} = A_1 + E = 3$ translation motion.

 $T_{Rot} = A_2 + E = 3$ Rotational motion.

but calculation indicate that,

 $T_3N = 3A_1 + 4E + A_2 = 12$ motions

 \therefore T_{vib} = 2A₁ + 2E = 6 vibrational motions

IR and Raman active

Both the infrared and Raman spectra should display the same 4 bands. These 4 bands are

two for $2A_1$, and two for 2E

i.e. one peak for one E

where each E appear in one peak (this one peak; present in real two peak supper imposed).

Doubly degenerate two vibrations are resolved components (at 90° to one another) in all possible planes around the bond axis, the two vibration are identical in energy, thus produce but one peak.

To draw the vibrational motion $NO_3^-(C_3v)$ or $NH_3(C_3v)$.

 v_s (N-H); A₁ Keeps the symmetry element

 δ_{s} (HNH); A₁ Keeps the symmetry element

 v_{as} (N-H); E

