Inorganic Chemistry

Second year 1st semester

Oxides

Oxygen forms oxides by direct combination with all elements of periodic table (except the noble gases and noble metals Au, Pd, Pt). The reaction is generally exothermic but some proceed slowly and requires heating to supply energy necessary to break the strong O=O bond. Then the reaction becomes exothermic

Classification of oxides

 $\frac{1-Classification of oxides according to \ \Delta H_{\underline{f}}^{o} & \Delta G_{\underline{f}}^{o} }{Formation of oxides} increase (or \ \Delta H_{f}^{o} & \Delta G_{f}^{o} increase)$ within a period from right to left

within a period from right to left

 $Li_2O > BeO > B_2O_3 > CO_2 > N_2O_3 > F_2O$

Increased stability of oxides

Exothermic

Endothermic

 ΔG_{f}° and ΔH_{f}° decrease or heat evolved decrease down the group with increased atomic number (Z) of elements 1

$$\begin{split} H_{\rm f}^{\ o} \ Li_2O &= -72 \quad K \ cal. \ / \ mol \ \Delta \\ \Delta H_{\rm f}^{\ o} \ Na_2O &= -45 \quad K \ cal. \ / \ mol \ . \end{split}$$

Decrease of ΔG° and ΔH_{f}^{o} Of $M_{2}O$

2- Classification according to acidic & basic properties

i- Acidic water insoluble oxides

They are insoluble in H_2O but react with strong bases to form water- soluble salts

$$SiO_2(s) + 2NaOH(aq) \longrightarrow Na_2SiO_3 + H_2O \longrightarrow 2Na_{aq}^+ SiO_3^{=}aq$$

3- Classificatio	n according to bonding nature
i- lonic oxides	: IA , IIA oxides M_2O & MO , they crystallize in antifluorite structure (C.N. of metal = 4 and C.N. of anion $O^{2-} = 8$, they exists in electrostatic attraction in the crystal lattice , they are <u>basic</u> in nature
ii- Covalent oxides	: molecular oxides (acid anhydride) exist as gases, examples : oxides of light nonmetal s: F_2O , NO, SO_3 , SO_2 bond between oxygen and other atom is <u>covalent</u> in character due to small Δ EN . Most non metal oxides are <u>acidic</u> (P_4O_{10} , CO_2 N_2O_3) Some are neutral(NO, N_2O , halogen oxides, noble gases oxides)

iii- Oxides of metalloids and heavy nonmetals : They are solid with polymeric structure (SiO_2, SnO_2, GeO_2) or discrete molecules As_4O_{10} , P_4O_{10} , P_4O_6 , Sb_4O_6 , SeO_2 (polymer) TeO₂ (polymer)they with slightly basic or acidic properties

Normal oxides of representative elements in max. ox. state

Increased basic and ionic character

IA	IIA	IIIA	IVA	VA	VIA	VIIA
Li ₂ O	*BeO	B ₂ O ₃	CO ₂	N ₂ O 5		F ₂ O
Na ₂ O	MgO	*Al ₂ O ₃	SiO ₂	P ₄ O ₁₀	SO ₃	
K ₂ O	CaO	*Ga ₂ O ₃	GeO ₂	As ₂ O ₅	SeO ₃	Br ₂ O ₇
Rb ₂ O	SrO	In ₂ O ₃	*SnO ₂	Sb ₂ O ₅	TeO ₃	I ₂ O ₇
Cs ₂ O	BaO	Tl ₂ O ₃	*PbO ₂	Bi ₂ O ₅	PoO ₃	At ₂ O ₇

Increase of acidic and covalent character

acidic

* amphoteric

Oxides of heavy post transition metals of period 6 : The formula:

because of Inert or unreactive s² electrons

Ox	ides of 1	st Transitio	on series					
3	4	5	6	7	8	9	10	11
IIIA	IVA	VA	VIA	VIIA	V	/IIIA		IB
Sc_2O_3	TiO	VO	CrO	MnO	FeO	CoO	NiO	CuO
(<mark>b</mark>)	(<mark>b</mark>)	(b,red)	(b,red)	(b)	(b)	(<mark>b</mark>)	(<mark>b</mark>)	(<mark>b</mark>)
	Ti ₂ O ₃	V_2O_3	Cr ₂ O ₃	Mn ₂ O ₃	Fe ₂ O ₃	Co ₂ O ₃		Cu ₂ O
	(<mark>b</mark>)	(b)	(am)	(b,ox)	(am)	(am)		(b)
	TiO ₂	VO ₂	CrO ₃	MnO ₂				
	(am)	(am)	(ac,ox)	(am)				
		V_2O_5		Mn ₂ O ₇				
		(ac)		(ac,ox)				
ac ac	ac acidic, b basic, am amphoteric, red reducing, ox oxidizing							

+2 becomes more stable and +3 less stable

Increased stability of higher ox. State and their oxides increased and so their acidic property

FeO ₄	not isolated
RuO ₄	decomp.
OsO ₄	isolated

Increased stability of lower oxidation state

1	Fe_2O_3	FeO	stable
	Ru_2O_3	RuO	unstable
	Os ₂ O ₃	OsO	unstable

Mixed Oxides

Mixed oxides: two types of oxides in one binary oxide containing the same metal ion but in two different oxidation states in the crystal lattice. e.g. :

 Fe_3O_4 magnetite (black) (FeO. Fe_2O_3) (insoluble in H_2O) FeO basic(pale green), Fe_2O_3 am(red brown)

 Pb_3O_4 red lead (red) (2PbO. PbO₂) (insoluble in H₂O) PbO(yellow) basic, PbO₂ am(brown)