
Stack Data Structure
Data Structure, second stage, Computer department, College of science 

for Women, University of Baghdad.

Dr. Amer Almahdawi.



What is a Stack?

• A stack is a simple data structure used for storing data.

• In a stack, the order in which the data arrives is important.

• A pile of plates in a cafeteria is a good example of a stack.

• The plates are added to the stack as they are cleaned, and they are 
placed on the top.

• When a plate, is required it is taken from the top of the stack.

• The first plate placed on the stack is the last one to be used.



Definition:

• A stack is an ordered list in which insertion and deletion are done at 
one end, called top.

• The last element inserted is the first one to be deleted.

• Hence, it is called the Last in First out (LIFO) or First in Last out (FILO) 
list.

• Special names are given to the two changes that can be made to a 
stack.

• When an element is inserted in a stack, the concept is called push, 
and when an element is removed from the stack, the concept is called 
pop.



How Stacks are used

• Trying to pop out an empty stack is called underflow and trying to 
push an element in a full stack is called overflow.

• Generally, we treat them as exceptions.

• Consider a working day in the office. Let us assume a developer is 
working on a long-term project.

• The manager then gives the developer a new task which is more 
important.

• The developer puts the long-term project aside and begins work on 
the new task.



How Stacks are used

• The phone rings, and this is the highest priority as it must be 
answered immediately.

• The developer pushes the present task into the pending tray and 
answers the phone.

• When the call is complete the task that was abandoned to answer the 
phone is retrieved from the pending tray and work progresses.

• To take another call, it may have to be handled in the same manner, 
but eventually the new task will be finished, and the developer can 
draw the long-term project from the pending tray and continue with 
that.



Stack ADT (Abstracted Data Type)

• The following operations make a stack an ADT. For simplicity, assume 
the data is an integer type.

• Main stack operations

• Push (int data): Inserts data onto stack.

• int Pop(): Removes and returns the last inserted element from the 
stack.



Auxiliary stack operations

• int Top(): Returns the last inserted element without removing it.

• int Size(): Returns the number of elements stored in the stack.

• int IsEmptyStack(): Indicates whether any elements are stored in the 
stack or not.

• int IsFullStack(): Indicates whether the stack is full or not.





Exceptions

• Attempting the execution of an operation may sometimes cause an 
error condition, called an exception.

• Exceptions are said to be “thrown” by an operation that cannot be 
executed.

• In the Stack ADT, operations pop and top cannot be performed if the 
stack is empty.

• Attempting the execution of pop (top) on an empty stack throws an 
exception.

• Trying to push an element in a full stack throws an exception.



Implementation

• There are many ways of implementing stack ADT; below are the 
commonly used methods.

• Simple array-based implementation.

• Dynamic array-based implementation.

• Linked lists implementation.



Simple Array 
Implementation

• This implementation of stack ADT uses 
an array.

• In the array, we add elements from left 
to right and use a variable to keep track 
of the index of the top element.



Simple Array Implementation

• The array storing the stack elements may become full.

• A push operation will then throw a full stack exception.

• Similarly, if we try deleting an element from an empty stack it will 
throw stack empty exception.



• class Stack(object):

• def __init__ (self, limit = 10):

• self.stk = []

• self.limit=limit

• def isEmpty(self):

• return len(self.stk)<=0

• def push(self.item):

• if len(self.stk) >= self.limit:

• print ('Stack Overflow!’)

• else:

• self.stk.append(item)

• print ('Stack after Push',self.stk)



• def pop(self):

• if len(self.stk) <= 0:

• print ('Stack Underflow!’)

• return 0

• else:

• return self.stk.pop()

• def peek(self):

• if len(self.stk) < 0:

• print ('Stack Underflow!’)

• return 0

• else:

• return self.stk[-1]



• def size(self):

• return len(self.stk)

• our_stack= Stack(5)

• our_stack.push(“1")

• our_stack.push(“21”)

• our_ stack.push(“14”)

• our_ stack.push(“31”)

• our_ stack.push(“19”)

• our_ stack.push(“3”)

• our_ stack.push(“99”)

• our_ stack.push("9")

• print (our_ stack.peek())

• print (our_ stack.pop())

• print (our_ stack.peek())

• print (our_ stack.pop())



Performance 
& Limitations

• Performance:

• Let n be the number of 
elements in the stack. The 
complexities of stack 
operations with this 
representation can be given 
as:



Limitations

• The maximum size of the stack must first be defined, and it cannot be 
changed.

• Trying to push a new clement into a full stack causes an 
implementation-specific exception.


