Big O notation

Data Structure, second stage, computer science department, college of
science for women, university of Baghdad.

Dr. Amer Al-Mahdawi



What Is Rate of Growth?

» The rate at which the running time increases as a function of input is called rate of growth.
 Let us assume that you go to a shop to buy a car and a bicycle.
* If your friend sees you there and asks what you are buying, then in general you say buying a car.

 This Is because the cost of the car is high compared to the cost of the bicycle (approximating the
cost of the bicycle to the cost of the car).

 Total Cost = cost_of car + cost _of bicycle
 Total Cost = cost_of car (approximation)

- For the above-mentioned example, we can represent the cost of the car and the cost of the bicycle
In terms of function, and for a given function ignore the low order terms that are relatively
Insignificant (for Iarge value of input size, n). As an example, in the case below, n*, 2n?, 100n and
500 arﬁ the individual costs of some function and approximate to n4since n* is the hlghest rule of
growt

e n* +2n2+ 100n + 500 = n*



Commonly Used Rates of Growth

Time Complexity | Name Example

1 Constant Adding an element to the front of a linked list

logn Logarithmic Finding an element in a sorted array
n Linear Finding an element in an unsorted array

nlogn Linear Logarithmic | Sorting n items by ‘divide-and-conquer’ - Mergesort
n* Quadratic Shortest path between two nodes in a graph
n’ Cubic Matrix Multiplication
/ Exponential The Towers of Hanoi problem




Types of Analysis

» To analyze the given algorithm, we need to know with which inputs the algorithm takes less time (performing
well) and with which inputs the algorithm takes a long time.

* We have already seen that an algorithm can be represented in the form of an expression.

« That means we represent the algorithm with multiple expressions: one for the case where it takes less time
and another for the case where it takes more time.

 In general, the first case is called the best case and the second case is called the worst case for the algorithm.
« ToO

« To analyze an algorithm, we need syntax, and that forms the base for asymptotic analysis/notation.

» There are three types of analysis:

» \Worst case:

 Defines the input for which the algorithm takes a long time.
* Input is the one for which the algorithm runs the slowest.




Types of Analysis

» Best case:
 Defines the input for which the algorithm takes the least time.

* Input is the one for which the algorithm runs the fastest.

e Average case:

 Provides a predict ion about the running time or the algorithm.
« Assumes that the input is random.

. lower Bound <= Average Time <= Upper Bound

» For a given algorithm, we can represent the best. worst and average cases in the form of expressions.
» Asan example, let f(n) be the function which represents the given algorithm.
e f(n) =n?+ 500, for worst case
 f(n) =n+ 100n + 500, for best case



Types of Analysis

« Similarly for the average case. The expression defines the inputs with which the algorithm takes the average

* running time (or memory).
* Big-O Notation

This notation gives the tight upper bound of the given function.

Generally, it is represented as f(n) = 0(g(n)).

Thot means, at larger values of n, the upper bound or f(n) is g(n) .

For example, if f(n) = n* +100n? + 10n + 50 is the given algorithm, then n4is g(n).

That means g(n) gives the maximum rate of growth for f(n) at larger values of n..



Types of Analysis

Rate of Growth cg(n)

fj EERES il
h P /,,.//

» Input Size, n

My



Types of Analysis

» Letus sec the O - notation with a little more detail.

O - notation defined as O(g(n)) = {f(n): there exist positive constants c and n, such that 0 < f(n) <cg(n) for
all n>ngis an asymptotic tight upper bound for f(n).

* g(n) is an asymptotic tight upper bound for f(n).

» Our objective is to give the smallest rate of growth g(n) which is greater than or equal to the given algorithms’
rate or growth f(n).

» Generally, we discard lower values of n. That means the rate of growth at lower values of n is not important.
* In the figure, n, is the point from which we need to consider the rate of growth for a given algorithm.
 Below no the rate of growth could be different. n, is called threshold for the given function.



e Big-0 Visualization

* O(g(n)) is the set of functions with smaller or the same order
of growth as g(n). For example; O(n?) includes O(1), O(n),
O(nlogn), etc.

» Note: Analyze the algorithms at larger values of n only. What
this means is, below n, we do not care about the rate of
growth.

Types of

AEWAIE

O(1): 100,1000, 200,1,20, etc. O(n):3n+ 100, 100n,2n - 1,3, etc.

O(n?)n?,5n — 10,100, n? — 2n + 1,
5, etc.

O(nlogn): Snlogn,3n — 100, 2n —
1,100,100n, etc.




