
Big O notation
Data Structure, second stage, computer science department, college of

science for women, university of Baghdad.

Dr. Amer Al-Mahdawi

What is Rate of Growth?

• The rate at which the running time increases as a function of input is called rate of growth.

• Let us assume that you go to a shop to buy a car and a bicycle.

• If your friend sees you there and asks what you are buying, then in general you say buying a car.

• This is because the cost of the car is high compared to the cost of the bicycle (approximating the
cost of the bicycle to the cost of the car).

• Total Cost = cost_of_car + cost _of _bicycle

• Total Cost = cost_of _car (approximation)

• For the above-mentioned example, we can represent the cost of the car and the cost of the bicycle
in terms of function, and for a given function ignore the low order terms that are relatively
insignificant (for large value of input size, n). As an example, in the case below, n4 , 2n2 , 100n and
500 are the individual costs of some function and approximate to n4 since n4 is the highest rule of
growth.

• n4 + 2n2 + 100n + 500 ᴝ n4

Commonly Used Rates of Growth

Types of Analysis

• To analyze the given algorithm, we need to know with which inputs the algorithm takes less time (performing
well) and with which inputs the algorithm takes a long time.

• We have already seen that an algorithm can be represented in the form of an expression.

• That means we represent the algorithm with multiple expressions: one for the case where it takes less time
and another for the case where it takes more time.

• In general, the first case is called the best case and the second case is called the worst case for the algorithm.

• To

• To analyze an algorithm, we need syntax, and that forms the base for asymptotic analysis/notation.

• There are three types of analysis:

• Worst case:

• Defines the input for which the algorithm takes a long time.

• Input is the one for which the algorithm runs the slowest.

Types of Analysis

• Best case:

• Defines the input for which the algorithm takes the least time.

• Input is the one for which the algorithm runs the fastest.

• Average case:

• Provides a predict ion about the running time or the algorithm.

• Assumes that the input is random.

• lower Bound <= Average Time <= Upper Bound

• For a given algorithm, we can represent the best. worst and average cases in the form of expressions.

• As an example, let 𝑓(𝑛) be the function which represents the given algorithm.

• 𝑓 𝑛 = 𝑛2 + 500 , for worst case

• 𝑓 𝑛 = 𝑛 + 100𝑛 + 500, for best case

Types of Analysis

• Similarly for the average case. The expression defines the inputs with which the algorithm takes the average

• running time (or memory).

• Big-0 Notation
• This notation gives the tight upper bound of the given function.

• Generally, it is represented as 𝑓 𝑛 = 𝑂 𝑔 𝑛 .

• Thot means, at larger values of n, the upper bound or 𝑓 𝑛 is g 𝑛 .

• For example, if 𝑓 𝑛 = 𝑛4 + 100n2 + 10n + 50 is the given algorithm, then n4 is g 𝑛 .

• That means g 𝑛 gives the maximum rate of growth for f 𝑛 at larger values of n..

Types of Analysis

Types of Analysis

• Let us sec the O - notation with a little more detail.

• O - notation defined as O(g(n)) = {f(n): there exist positive constants c and n0 such that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for
all n ≥ n0is an asymptotic tight upper bound for 𝑓 𝑛 .

• g(n) is an asymptotic tight upper bound for 𝑓 𝑛 .

• Our objective is to give the smallest rate of growth g(n) which is greater than or equal to the given algorithms’
rate or growth 𝑓 𝑛 .

• Generally, we discard lower values of n. That means the rate of growth at lower values of n is not important.

• In the figure, n0 is the point from which we need to consider the rate of growth for a given algorithm.

• Below n0 , the rate of growth could be different. n0 is called threshold for the given function.

Types of
Analysis

• Big-0 Visualization

• O(g(n)) is the set of functions with smaller or the same order
of growth as g(n). For example; O(n2) includes O(1), O(n),
O(𝑛𝑙𝑜𝑔𝑛), etc.

• Note: Analyze the algorithms at larger values of n only. What
this means is, below n0 we do not care about the rate of
growth.

