
Recursion and Backtracking
Data structure, Computer science department, college of science for

women, University of Baghdad.

Dr. Amer Al-Mahdawi

What is Recursion

• Any function which calls itself is called recursive.

• A recursive method solves a problem by calling a copy of itself to
work on a smaller problem.

• This is called the recursion step.

• The recursion step can result in many more such recursive calls.

• It is important to ensure that the recursion terminates.

• Each time the function calls itself with a slightly simpler version of the
original problem.

• The sequence of smaller problems must eventually converge on the
base case.

Why Recursion?

• Recursion is a useful technique borrowed from mathematics.

• Recursive code is generally shorter and easier to write than iterative
code.

• Generally, loops are turned into recursive functions when they are
compiled or interpreted.

• Recursion is most useful for tasks that can be defined in terms of
similar subtasks.

• for example, sort, search, and traversal problems often have simple
recursive solutions.

Format of a Recursive Function

• A recursive function performs a task in part by calling itself to perform
the subtasks.

• At some point, the function encounters a subtask that it can perform
without calling itself.

• This case, where the function does not recur, is called the base case.

• The former, where the function calls itself to perform a subtask, is
referred to as the cursive case.

• We can write all recursive functions using the format:

Format of a Recursive Function

• if(test for the base case)

• return some base case value

• else if(test for another base case)

• return some other base case value

• // the recursive case

• Else

• return (some work and then a recursive call)

Format of a Recursive Function

• As an example, consider the factorial function: n! is the product of all
integers between n and 1.

• The definition of recursive factorial looks like:

• n! = 1 , if n = 0

• n! = n * (n - 1)! if n > o

• This definition can easily be converted to recursive implementation.

• Here the problem is determining the value of n!, and the subproblem
is determining the value of (n - 1)!.

Format of a Recursive Function

• In the recursive case, when n is greater than 1 , the function calls itself to
determine the value of(n - 1)! and multiplies that with n.

• In the base case, when n is 0 or 1 , the function simply returns 1. This looks
like the following:

• // calculates factorial of n positive integer

• def factorial(n):

• if n == 0: return 1

• return n * factorial(n-1)

• Print (factorial(4))

Recursion and Memory (Visualization)

• Each recursive call makes a new copy of that method (only the
variables) in memory.

• Once a method ends (that is, returns some data), the copy of that
returning method is removed from memory.

• The recursive solutions look simple, but visualization and tracing takes
time.

• For better understanding, let us consider the following example.

Recursion and Memory (Visualization)

• def Print(n):

• if n == 0: # this is the terminating base case

• return 0

• else:

• print n

• return Print(n-1) # recursive call to itself again

• print(Print(4))

Recursion and Memory (Visualization)

• For this example, if we call the print function with n=4, visually our
memory assignments may look like:

Print(4)
Print(3)

Print(2)
Print(1)

Print(0)

Recursion and Memory (Visualization)

• For this example, if we call the print function with n=4, visually our
memory assignments may look like:

4!
4*3!

3*2!
2*1!

1

Return 1

2*1! Is Returned

3*2! Is returned4*3! Is returned

Returned 24 to
main function

Recursion versus Iteration

• While discussing recursion, the basic question that comes to mind is:
which way is better? - iteration or recursion?.

• The answer to this question depends on what we are trying to do.

• A recursive approach mirrors the problem that we are trying to solve.

• A recursive approach makes it simpler to solve a problem that may
not have the most obvious of answers.

• But recursion adds overhead for each recursive call (needs space on
the stack frame).

Recursion

• Terminates when a base case is reached.

• Each recursive call requires extra space on the stack frame (memory).

• If we get infinite recursion, the program may run out of memory and
result in stack overflow.

• Solutions to some problems are easier to formulate recursively.

Iteration

• Terminates when a condition is proven to be false.

• Each iteration does not require extra space.

• An infinite loop could loop forever since there is no extra memory
being created.

• Iterative solutions to a problem may not always be as obvious as a
recursive solution.

Notes on Recursion

• Recursive algorithms have two types of cases, recursive cases and base
cases.

• Every recursive function case must terminate at a base case.

• Generally, iterative solutions are more efficient than recursive solutions
[due to the overhead of function calls].

• A recursive algorithm can be implemented without recursive function calls
using a stack, but it’s usually more trouble than its worth. That means any
problem that can be solved recursively can also be solved iteratively.

• For some problems, there are no obvious iterative algorithms.

• Some problems are best suited for recursive solutions while others are not.

What is Backtracking?

• Backtracking is a form of recursion.

• The usual scenario is that you are faced with several options, and you
must choose one or these.

• After you make your choice, you will get a new set of options; just
what set of options you get depends on what choice you made.

• This procedure is repeated over and over until you reach a final state.

• If you made a good sequence of choices, your final state is a goal
state; if you didn't, it isn’t.

• Backtracking is a method of exhaustive search using divide and
conquer.

