Omega-Q Notation
Theta- © Notation

Data Structure, second stage, computer science department, college of
science for women, University of Baghdad.

Omega-Q Notation

* This notation gives the tighter lower bound of the given algorithm
and we represent it as An) = Q(g(n)).

* That means, at larger values of n, the tighter lower bound of An) is
g(n). For example, if An) =100n2 + 10n + 50, g(n) is Q(n?).

4

Rate of Growth

l Fn) cg(n))

O R N O W R O 0 - s . o .

. e — Input Size, n
0

V %

Omega-Q Notation

* The Q notation can be defined as Q (g(n)) = {f(n): there exist positive
constants c and n,such that 0 < ¢g(n) < f(n) foralln 2 n, }.

* g(n) is an asymptotic tight lower bound for An).

e Our objective is to give the largest rate of growth g(n) which is less
than or equal to the given algorithm's rate of growth f (n).

* Example -1 Find lower bound for 7(n)=5r".
* Solution: 3 ¢, n, Such that: 0 < ¢n? < 5n“=:>c=1 and ny=1
* 5n%=Q(n?) withc=1andn,=1

Theta- ® Notation

* This notation decides whether the upper and lower bounds of a given
function (algorithm) are the same.

* The average running time of an algorithm is always between the
lower bound and the upper bound.

* If the upper bound (O) and lower bound (Q) give the same result,
then the O notation will also have the same rate of growth.

* As an example, let us assume that f(n)= 10n + n is the expression.

* Then, its tight upper bound g(n) is O(n), The rate of growth in the best
caseis g(n)=0(n).

Theta- © Notation ¢(

* In this case, the rates of growth in the best case and worst case are
the same. As a result, the average case will also be the same.

* For a given function (algorithm), if the rates of growth (bounds) for O
and Q are not the same, then the rate of growth for the © case may
not be the same.

* In this case, we need to consider all possible time complexities and
take the average of those (for example, for a quick sort average case).

* Now consider the definition of © notation. It is defined as ©(g(n)) =
{f (n): there exist positive constants c;, ¢, and n, such that 0 < c;g(n)
<f(n)<c,g(n)foralln 2n,}.

Theta- ® Notation

* g(n) is an asymptotic tight bound for f (n).

* O(g(n)) is the set of functions with the same order of growth as
gm).

Guidelines for Asymptotic Analysis

* There are some general rules to help us determine the running time
of an algorithm.

* 1) Loops: The running time of a loop is, at most, the running time of
the statements inside the loop (including tests) multiplied by the
number of iterations.

 # executes n times

e foriin range(0,n):
e print 'Current Number:'. i #constant time
Total time = a constant c x n =c n = 0(n).

Guidelines for Asymptotic Analysis

* 2) Nested loops: Analyze from the inside out. Total running time is the
product of the sizes of all the loops.

* # outer loop executed n times N
e foriin range(O,n); ! C N

* # inner loop executes n times

e forjin range(O,n): V"
e print'i value %.d and j value %d' % (i,j) #constant time C

* Total time: = cx n x n =cn2 = 0(n?).

Guidelines for Asymptotic Analysis

 3) Consecutive statements: Add the time complexities of each statement.
(o n=100

* #executes n times C > s
M\ e foriin range(O,n): otn | (ﬂ
C « print 'Current Number?, | sconstant time () = Lf\rLJr
. #ou.t.er loop executed n times) A~ 2
» for iin range(O,n): h, 2 (n)

e #inner loop executes n times
e forjinrange(O,n): N
(" * print'i value %d and j value o/od' % (i,j) #constant time

» Total time = €y + ¢,n + c,n’= O(n?).

Guidelines for Asymptotic Analysis

* 4) If-then-else statements : Worst-case running time: the test, plus
either the then part or the e/se part (whichever is the larger).

e if n==1: #constant time (g
* print "Wrong Value"
* print n

* else:

e foriinrange(O,n): #n times ‘A
« print 'Current Number:,| #constant time C |

* Totaltime = ¢, + ¢, * n = 0(n).

Guidelines for Asymptotic Analysis

* 5) Logarithmic complexity: An algorithm is O(logn) if it takes a
constant time to cut the problem size by a fraction (usually by 1/2).
As an example, let us consider the following program:

* def Logarithms(n):
¢« iz
* whilei<=n:
¢« ji=i*2
* printi
* Logarithms(100)
* If we observe carefully, the value of i is doubling every time.

Guidelines for Asymptotic Analysis

* Initiallyi=1, in next stepi=2, and in subsequent steps i =4,8 and so
on.

e Let us assume that the loop is executing some k times. At k" step 2%
=n and we come out of loop. Taking logarithm on both sides, gives

* log(2%)=1logn

* klog? =logn

*k = logn //if we assume base-2
* Total time = O(logn).

Guidelines for Asymptotic Analysis

* Initiallyi=1, in next stepi=2, and in subsequent steps i =4,8 and so
on.

e Let us assume that the loop is executing some k times. At k" step 2%
=n and we come out of loop. Taking logarithm on both sides, gives

* log(2%)=1logn

* klog? =logn

*k = logn //if we assume base-2
* Total time = O(logn).

Guidelines for Asymptotic Analysis

e def Function(n):
e count=0 Co
e foriinrange(n/2, n): #Outer loop execute n/2 times '
e j=1 (i
* While j+ n/2 <= n: #Middle loop executes n/2 times \f\
e k=l C
e while k <= n: #tinner loop execute lo9n times

e count=count+1 p\ l@ \
- JJ 02y

 print (count) C3 \[\1 \JJ(\

* Function(20)
* The complexity of the above function is O(n?logn).

	Slide 1: Omega-Ω Notation Theta- Θ Notation
	Slide 2: Omega-Ω Notation
	Slide 3
	Slide 4: Omega-Ω Notation
	Slide 5: Theta- Θ Notation
	Slide 6: Theta- Θ Notation
	Slide 7: Theta- Θ Notation
	Slide 8: Guidelines for Asymptotic Analysis
	Slide 9: Guidelines for Asymptotic Analysis
	Slide 10: Guidelines for Asymptotic Analysis
	Slide 11: Guidelines for Asymptotic Analysis
	Slide 12: Guidelines for Asymptotic Analysis
	Slide 13: Guidelines for Asymptotic Analysis
	Slide 14: Guidelines for Asymptotic Analysis
	Slide 15: Guidelines for Asymptotic Analysis

