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Omega-Ω Notation

• This notation gives the tighter lower bound of the given algorithm 
and we represent it as f(n) = Ω(g(n)).

• That means, at larger values of n, the tighter lower bound of f(n) is 
g(n). For example, if f(n) = 100n2 + 10n + 50,  g(n) is Ω(n2).





Omega-Ω Notation

• The Ω notation can be defined as Ω (g(n)) = {f(n): there exist positive 
constants c and n0 such that 0 ≤ cg(n) ≤ 𝑓(𝑛) for all n ≥ n0 }. 

• g(n) is an asymptotic tight lower bound for f(n). 

• Our objective is to give the largest rate of growth g(n) which is less 
than or equal to the given algorithm's rate of growth 𝑓(𝑛).

• Example -1 Find lower bound for f(n) = 5n2.

• Solution: Ǝ c, n0 Such that: 0 ≤ 𝑐𝑛2 ≤ 5𝑛2=:> c= 1  and n0= 1

• 5𝑛2= Ω(𝑛2) with c = 1 and n0 = 1



Theta- Θ Notation

• This notation decides whether the upper and lower bounds of a given 
function (algorithm) are the same.

• The average running time of an algorithm is always between the 
lower bound and the upper bound. 

• If the upper bound (O) and lower bound (Ω) give the same result, 
then the Θ notation will also have the same rate of growth.

• As an example, let us assume that 𝑓 𝑛 = 10n + n is the expression.

• Then, its tight upper bound g(n) is O(n), The rate of growth in the best 
case is 𝑔(𝑛)= 𝑂(𝑛).



Theta- Θ Notation

• In this case, the rates of growth in the best case and worst case are 
the same. As a result, the average case will also be the same.

• For a given function (algorithm), if the rates of growth (bounds) for O 
and Ω are not the same, then the rate of growth for the Θ case may 
not be the same.

• In this case, we need to consider all possible time complexities and 
take the average of those (for example, for a quick sort average case).

• Now consider the definition of Θ notation. It is defined as Θ(𝑔(𝑛)) = 
{𝑓(𝑛): there exist positive constants 𝑐1, 𝑐2 and 𝑛0 such that 0 ≤ 𝑐1𝑔(𝑛)
≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛) for all 𝑛 ≥ 𝑛0}.



Theta- Θ Notation

• 𝑔(𝑛) is an asymptotic tight bound for 𝑓(𝑛).

• Θ(𝑔(𝑛)) is the set of functions with the same order of growth as 
𝑔(𝑛).



Guidelines for Asymptotic Analysis

• There are some general rules to help us determine the running time 
of an algorithm.

• 1) Loops: The running time of a loop is, at most, the running time of 
the statements inside the loop (including tests) multiplied by the 
number of iterations.

• # executes n times

• for i in range(0,n):
• print 'Current Number:'. i #constant time

Total time = a constant c x n = c n = O(n).



Guidelines for Asymptotic Analysis

• 2) Nested loops: Analyze from the inside out. Total running time is the 
product of the sizes of all the loops.

• # outer loop executed n times

• for i in range(O,n):

• # inner loop executes n times
• for j in range(O,n):

• print 'i value %.d and j value %d' % (i,j) #constant time

• Total time: = c x n x n = cn2 = O(𝑛2).



Guidelines for Asymptotic Analysis

• 3) Consecutive statements: Add the time complexities of each statement.
• n = 100
• #executes n times
• for i in range(O,n):

• print 'Current Number:’, I               #constant time 

• #outer loop executed n times
• for i in range(O,n):

• # inner loop executes n times
• for j in range(O,n):

• print 'i value %d and j value o/od' % (i,j)        #constant time 

• Total time = c0 + c1n + c2𝑛
2= O(𝑛2).



Guidelines for Asymptotic Analysis

• 4) If-then-else statements : Worst-case running time: the test, plus 
either the then part or the else part (whichever is the larger).

• if n == 1:          #constant time
• print "Wrong Value"

• print n

• else:

• for i in range(0,n):       #n times

• print 'Curren t Number:’, I       #constant time

• Total time = 𝑐0 + 𝑐1 ∗ 𝑛 = 𝑂(𝑛).



Guidelines for Asymptotic Analysis

• 5) Logarithmic complexity: An algorithm is O(𝑙𝑜𝑔𝑛) if it takes a 
constant time to cut the problem size by a fraction (usually by 1/2 ). 
As an example, let us consider the following program:

• def Logarithms(n):
• i = I

• while i <= n:
• i= i * 2

• print i

• Logarithms(100)

• If we observe carefully, the value of i is doubling every time.



Guidelines for Asymptotic Analysis

• Initially i = I, in next step i = 2, and in subsequent steps i = 4,8 and so 
on.

• Let us assume that the loop is executing some k times. At 𝑘𝑡ℎ step 2𝑘

= 𝑛 and we come out of loop. Taking logarithm on both sides, gives

• log(2𝑘 ) = 𝑙𝑜𝑔𝑛

• 𝑘𝑙𝑜𝑔2 = 𝑙𝑜𝑔𝑛

• 𝑘 = 𝑙𝑜𝑔𝑛 //if we assume base-2

• Total time = O(𝑙𝑜𝑔𝑛).



Guidelines for Asymptotic Analysis
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Guidelines for Asymptotic Analysis

• def Function(n):
• count= 0
• for i in range(n/2, n):     #Outer loop execute n/2 times

• j = 1
• While j + n/2 <= n: #Middle loop executes n/2 times

• k=l

• while k <= n: #tinner loop execute lo9n times

• count = count + 1
• k = k * 2

• j = j + l

• print (count)

• Function(20)

• The complexity of the above function is O(𝑛2𝑙𝑜𝑔𝑛). 
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