Omega-Ω Notation Theta- Θ Notation

Data Structure, second stage, computer science department, college of science for women, University of Baghdad.

Omega-Ω Notation

- This notation gives the tighter lower bound of the given algorithm and we represent it as $f(n) = \Omega(g(n))$.
- That means, at larger values of n, the tighter lower bound of f(n) is g(n). For example, if $f(n) = 100n^2 + 10n + 50$, g(n) is $\Omega(n^2)$.

Omega-Ω Notation

- The Ω notation can be defined as $\Omega(g(n)) = \{f(n): \text{ there exist positive constants c and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$
- g(n) is an asymptotic tight lower bound for f(n).
- Our objective is to give the largest rate of growth g(n) which is less than or equal to the given algorithm's rate of growth f(n).
- Example -1 Find lower bound for $f(n) = 5n^2$.
- Solution: $\exists c, n_0$ Such that: $0 \le cn^2 \le 5n^2 = c \ge 1$ and $n_0 = 1$
- $5n^2 = \Omega(n^2)$ with c = 1 and n₀ = 1

Theta- \Theta Notation

- This notation decides whether the upper and lower bounds of a given function (algorithm) are the same.
- The average running time of an algorithm is always between the lower bound and the upper bound.
- If the upper bound (O) and lower bound (Ω) give the same result, then the Θ notation will also have the same rate of growth.
- As an example, let us assume that f(n) = 10n + n is the expression.
- Then, its tight upper bound g(n) is O(n), The rate of growth in the best case is g(n)=O(n).

Theta- \Theta Notation

- In this case, the rates of growth in the best case and worst case are the same. As a result, the average case will also be the same.
- For a given function (algorithm), if the rates of growth (bounds) for O and Ω are not the same, then the rate of growth for the Θ case may not be the same.
- In this case, we need to consider all possible time complexities and take the average of those (for example, for a quick sort average case).
- Now consider the definition of Θ notation. It is defined as $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

Theta- \Theta Notation

- g(n) is an asymptotic tight bound for f(n).
- $\Theta(g(n))$ is the set of functions with the same order of growth as g(n).

- There are some general rules to help us determine the running time of an algorithm.
- 1) **Loops**: The running time of a loop is, at most, the running time of the statements inside the loop (including tests) multiplied by the number of iterations.
- # executes n times
- for i in range(0,n):
 - print 'Current Number:'. i #constant time

Total time = a constant c x n = c n = O(n).

- 2) Nested loops: Analyze from the inside out. Total running time is the product of the sizes of all the loops.
- # outer loop executed n times
- for i in range(O,n): 🔥
- # inner loop executes n times
 - for j in range(O,n): V
 - print 'i value %.d and j value %d' % (i,j) #constant time
- Total time: = $c x n x n = cn^2 = O(n^2)$.

(M²

- 3) **Consecutive statements:** Add the time complexities of each statement.
- n = 100
 - #executes n times
- for i in range(O,n):
 - print 'Current Number:', I
- o(n)

- #constant time $\mathcal{O}(n^{1})$
- for i in range(O,n): • # inner loop executes n times

• #outer loop executed n times

- for j in range(O,n):
 - print 'i value %d and j value o/od' % (i,j)
- Total time = $c_0 + c_1 n + c_2 n^2 = O(n^2)$.

#constant time

 $O = M^{2}$ $O = N^{2}$

- 4) If-then-else statements : Worst-case running time: the test, plus either the *then* part or the *else* part (whichever is the larger).
- if n == 1: #constant time C_0
 - print "Wrong Value"
 - print n
- else:
 - for i in range(0,n): #n times \land \lan
 - print 'Curren t Number:', I #constant time 🧲
- Total time = $c_0 + c_1 * n = O(n)$.

- 5) Logarithmic complexity: An algorithm is O(logn) if it takes a constant time to cut the problem size by a fraction (usually by 1/2). As an example, let us consider the following program:
- def Logarithms(n):
 - i = I
 - while i <= n:
 - i= i * 2
 - print i
- Logarithms(100)
- If we observe carefully, the value of i is doubling every time.

- Initially i = I, in next step i = 2, and in subsequent steps i = 4,8 and so on.
- Let us assume that the loop is executing some k times. At k^{th} step $2^k = n$ and we come out of loop. Taking logarithm on both sides, gives
- $\log(2^k) = logn$
- $klog^2 = logn$
- k = logn //if we assume base-2
- Total time = O(logn).

- Initially i = I, in next step i = 2, and in subsequent steps i = 4,8 and so on.
- Let us assume that the loop is executing some k times. At k^{th} step $2^k = n$ and we come out of loop. Taking logarithm on both sides, gives
- $\log(2^k) = logn$
- $klog^2 = logn$
- k = logn //if we assume base-2
- Total time = O(logn).

 $\gamma^c/$

- def Function(n):
 - count= 0 ⊂
 - for i in range(n/2, n): #Outer loop execute n/2 times
 - j = 1 C
 - - k=l <u>C</u>1

• i=i+

- while k <= n: #tinner loop execute lo9n times
 - count = count + 1
 k = k * 2
- print (count)
- Function(20)
- The complexity of the above function is $O(n^2 log n)$.