Omega-Ω Notation Theta- Θ Notation

Data Structure, second stage, computer science department, college of science for women, University of Baghdad.

Omega-Ω Notation

- This notation gives the tighter lower bound of the given algorithm and we represent it as $f(n) = \Omega(g(n))$.
- That means, at larger values of n, the tighter lower bound of $f(n)$ is g(n). For example, if $f(n) = 100n^2 + 10n + 50$, g(n) is Ω(n²).

Omega-Ω Notation

- The Ω notation can be defined as Ω (g(n)) = {f(n): there exist positive constants c and n_o such that $0 \le cg(n) \le f(n)$ for all $n \ge n_o$ }.
- $g(n)$ is an asymptotic tight lower bound for $f(n)$.
- Our objective is to give the largest rate of growth $g(n)$ which is less than or equal to the given algorithm's rate of growth $f(n)$.
- Example -1 Find lower bound for $f(n) = 5n^2$.
- Solution: $\exists c, n_0$ Such that: $0 \le cn^2 \le 5n^2 = > c = 1$ and $n_0 = 1$
- $5n^2 = \Omega(n^2)$ with c = 1 and n₀ = 1

Theta- Θ Notation

- This notation decides whether the upper and lower bounds of a given function (algorithm) are the same.
- The average running time of an algorithm is always between the lower bound and the upper bound.
- If the upper bound (O) and lower bound (Ω) give the same result, then the Θ notation will also have the same rate of growth.
- As an example, let us assume that $f(n)$ = 10n + n is the expression.
- Then, its tight upper bound $g(n)$ is $O(n)$, The rate of growth in the best case is $g(n) = O(n)$.

Theta- Θ Notation

- In this case, the rates of growth in the best case and worst case are the same. As a result, the average case will also be the same.
- For a given function (algorithm), if the rates of growth (bounds) for O and Ω are not the same, then the rate of growth for the Θ case may not be the same.
- In this case, we need to consider all possible time complexities and take the average of those (for example, for a quick sort average case).
- Now consider the definition of Θ notation. It is defined as $\Theta(g(n))$ = ${f(n)}$: there exist positive constants c_1 , c_2 and n_0 such that $0 \le c_1 g(n)$ $\leq f(n) \leq c_2 g(n)$ for all $n \geq n_0$.

Theta- Θ Notation

- $g(n)$ is an asymptotic tight bound for $f(n)$.
- $\Theta(g(n))$ is the set of functions with the same order of growth as $g(n).$

- There are some general rules to help us determine the running time of an algorithm.
- 1) **Loops**: The running time of a loop is, at most, the running time of the statements inside the loop (including tests) multiplied by the number of iterations.
- # executes n times
- for i in range $(0,n)$:
	- print 'Current Number:'. i #constant time

Total time = a constant $c \times n = c$ n = $O(n)$.

- 2) Nested loops: Analyze from the inside out. Total running time is the product of the sizes of all the loops.
- # outer loop executed n times
- for i in range(O,n): \bigcap
- # inner loop executes n times
	- for j in range(O,n): \bigvee
		- print 'i value %.d and j value %d' % (i,j) #constant time $\sqrt{ }$
- Total time: = c x n x n = cn² = $O(n^2)$.

 Γ $\sqrt{2}$

 $ol(n)$

- 3) **Consecutive statements:** Add the time complexities of each statement.
- \bigcirc n = 100
	- #executes n times
- \bigcap for i in range(O,n):
	-
	- #outer loop executed n times
	- for i in range(O,n): \neg
		- # inner loop executes n times
		- for j in range(O, n): N
			- \bigcap print 'i value %d and j value o/od' % (i,j) #constant time
	- Total time = C_0 + c₁n + c₂ n^2 = O(n^2).

 $O(n^2)$

• 10r 1 In range(O,n):

C • print 'Current Number:', I #constant time $Q = (N + V)$

• #outer loop executed n times $2^{\frac{1}{2}}$

• for i in range(O n) · h

- 4**) If-then-else statements** : Worst-case running time: the test, plus either the *then* part or the *else* part (whichever is the larger).
- if $n = 1$: #constant time \mathcal{L}_{Ω}
	- print "Wrong Value"
	- print n
- else:
	- for i in range(0,n): #n times \bigcap
		- print 'Curren t Number:', I #constant time \subset |
- Total time = $c_0 + c_1 * n = O(n)$.

- 5) Logarithmic complexity: An algorithm is $O(log n)$ if it takes a constant time to cut the problem size by a fraction (usually by 1/2). As an example, let us consider the following program:
- def Logarithms(n):
	- \bullet i = 1
	- while $i \leq n$:
		- i= $i * 2$
		- print i
- Logarithms(100)
- If we observe carefully, the value of i is doubling every time.

- Initially $i = 1$, in next step $i = 2$, and in subsequent steps $i = 4,8$ and so on.
- Let us assume that the loop is executing some k times. At k^{th} step 2^k $= n$ and we come out of loop. Taking logarithm on both sides, gives
- $\log(2^k)$ = $logn$
- $klog^2 = log n$
- $k = log n$ //if we assume base-2
- Total time = $O(logn)$.

- Initially $i = 1$, in next step $i = 2$, and in subsequent steps $i = 4,8$ and so on.
- Let us assume that the loop is executing some k times. At k^{th} step 2^k $= n$ and we come out of loop. Taking logarithm on both sides, gives
- $\log(2^k)$ = $logn$
- $klog^2 = log n$
- $k = log n$ //if we assume base-2
- Total time = $O(logn)$.

 η^c c/

- def Function(n):
	- count= 0 C_0
	- for i in range(n/2, n): #Outer loop execute n/2 times \bigcap
		- $i = 1$ C_1
		- While $j + n/2 \le n$: #Middle loop executes $n/2$ times
			- k=l C_2
			- while k <= n: #tinner loop execute lo9n times
				- count = $count + 1$ • $k = k * 2$
	- $j = j + 1$ • print (count) L_{3}
- Function(20)
- The complexity of the above function is $O(n^2 log n)$.