UNIVERSITY OF BAGHDAD COLLEGE OF SCIENCE DEPARTMENT OF PHYSICS

SUBJECT: DIGITAL ELECTRONICS SECOND YEAR SECOND SEMESTER

Dr. Zaynab Tal'at Al-Sheibani

Chapter 1: Logic gates:

- 1-1 Decision making elements NOT, OR, AND, NOR, NAND, XOR, XNOR –Gates
- 1-2 Combinational logic circuit
- 1-3 Simple logic circuits
- 1-4 Universality of the NAND-gate
- 1-5 Universality of the NOR-gate

Chapter 2: Numbering systems

- 2-1 Decimal numbers
- 2-2 Binary numbers
- 2-3 Binary addition,
- 2-4 Binary subtraction (1's and 2's complements methods)
- 2-5 Binary multiplication
- 2-6 Binary division
- 2-7 Octal numbering system
- 2-8 Hexadecimal numbering system
- 2-9 Conversion between the systems
- 2-10 Digital codes
 - 1- Binary coded decimal code (BCD code)
 - 2- Excess-3 code (Xs-3 code)
 - 3- Gray code

Chapter 3: Boolean algebra

3-1 Laws of Boolean algebra

Commutative law

Associative law

Distributive law

- 3-2 Rules of Boolean algebra
- 3-3 De Morgan's theorems
- 3-4 Simplifying logic equations using Boolean algebra

Chapter 4: Arithmetic logic circuits

- 4-1 Addition (half adder-full adder binary adder)
- 4-2 Subtraction (half subtractor –full subtractor- binary subtractor)

1's complement subtractor logic circuit

2's complement adder subtractor logic circuit

4-3 Logic families

Resistor- transistor logic (RTL)

Diode-transistor logic (DTL)

Transistor-transistor logic (TTL)

Emitter coupled logic (ECL)

Integrated-injection logic (I²L)

Metal oxide semiconductor logic MOS

Chapter 5: Logic gates: 2-memory elements (flip-flops)

- 5-1 Bistable multivibrator as a memory element
- 5-2 RS flip-flop
- 5-3 D flip-flop
- 5-4 JK flip-flop
- 5-5 T flip-flop
- 5-6 Master-Slave flip-flop
- 5-7 Use of flip-flops as a simple counter

Chapter 6: Simplifying logic equations

- 6-1 Fundamental products
- 6-2 Simplifying logic equations using Karnaugh maps

AND-OR network

OR-AND network

NAND-NAND networks

NOR-NOR networks