المحاضرة الرابعة الكيمياء الكهربائية

اعادة لقوانين الكيمياء الكهربائية

(Siemens) أو ((Siemens) أو ((Siemens)) وبالوحدات الدولية هو ((Siemens)) أو ((Siemens)) وحدته

$$\mathbf{G} = \frac{1}{\mathbf{R}}$$

2- التوصيلية الكهربائية R K Electric conductivity

$$\mathbf{K} = \frac{1}{r}$$

$$\mathbf{K} = G\left(\frac{\ell}{A}\right)$$

وحداتها (S.cm⁻¹)(ohm⁻¹cm⁻¹)

 $m cm^{-1}$ وحداته $m K_{cell}$

$$\mathbf{K}_{\text{cell}} = \mathbf{K} \times \mathbf{R}$$

4- التوصيلية المولارية Molar conductivity

وحداتها ohm-1cm2mol-1 أو S cm² mol-1

$$\Lambda = \frac{1000 \, \text{K}}{C(mole/L)}$$

التوصيلية المولارية المحددة Limiting molar conductivity

ويرمز لها بالرمز (Λ^{0})

وحداتها هي نفس وحدات التوصيلية المولارية (ohm-1 cm-2 mol-1) و (S cm2 mol-1) و حداتها هي نفس وحدات التوصيلية المحلول الى مالانهاية ∞

*قاعدة كوهلاروش Kohlraush law

التعريف: ان كل ايون في المحلول الالكتروليتي يسهم بتوصيلية في التوصيل الكلي للمحلول الالكتروليتي بغض النظر عن الايونات الاخرى المتواجدة معه في ذلك المحلول

جدول قيم لبعض المحاليل الالكتروليتية في 25C°

$\Lambda^{ m o}$	Λº/Scm ²	الالكتروليت	Λº/Scm ²	الالكتروليت
21.1	108.9	NaCl	130	KCl
21.1	105.2	NaNO ₃	126.3	KNO ₃
21.1	110.9	Na ₂ SO ₄	132	K ₂ SO ₄

لهذا السبب ندخل تعريف يسمى التوصيلية المولارية الأيونية

 λ^{o}_{i} (Scm² mol⁻¹) وحداتها Ionic molar conductivity λ^{o}_{i} ويرمز لها

 $\Lambda^{o} = \nu_{+} \lambda^{o}_{+} + \nu_{-} \lambda^{o}$

التوصيلية المولارية λ^{0}_{+}

 λ^{0} التوصيلية المولارية الايونية للايون السالب λ^{0}

عدد مولات الايونات الموجبة v_+

عدد مولات الايونات السالبة. v = 0

$25c^{\circ}$ جدول لقيم $\lambda^{\circ}(Scm^2)$ لبعض الايونات في

λ°_	الايون	λ^{o}_{+}	الايون
197.6	OH-	349.8	H ⁺
76.3	Cl ⁻	38.69	Li ⁺
78.4	Br ⁻	50.11	Na ⁺
76.8	I-	73.50	K ⁺
71.4	NO ₃	61.92	Ag^+

40.9	CH ₃ COO	73.40	$\mathrm{NH_4}^+$
159.6	$SO_4^=$	166.12	Mg^{+2}
		119	Ca ⁺²
		108	Cu ⁺²

مثال: جد التوصيلية المولارية المحددة لمحلول BaCl_2 (استخدم الجدول

$$BaCl_2 \rightarrow Ba^{+2} + 2Cl^{-1}$$

$$v_{+} = 1 \quad v_{-} = 2$$

$$\lambda^{o} Ba^{+2} = 127.28$$

$$\lambda$$
 Cl⁻ = 76.3

$$\Lambda^{\text{ o}} = 1 \times 127.28 + 2 \times 76.3$$

$$\Lambda = (279.88) \text{ S cm}^2$$