
By

Dr. Amal Sufuih Ajrash

ADVANCE PROGRAMMING
(JAVA LANGUAGE)

PART 1

Course Goal

 This course is a training on programming in the Java language

for students who have completed the programming concepts course

or have some experience in the field of programming. Students will

create Java applications with a focus on correct object-oriented

programming techniques that will later become familiar with

object-oriented design, including creating classes in Java and using

existing classes as stipulated in the current version of the Java API.

Good luck

Advance Programming Course Syllabus

1. An Overview of Java.

2. Concept of Class and Object.

3. Data Types, Variables, and Arrays.

4. Operators.

5. Control Statements.

6. Inheritance.

7. Method Overriding.

8. Packages and Interfaces.

9. Object Class.

10. Exception Handling.

11. Java’s Built-in Exceptions.

12. Multithreaded Programming.

13. Internet Addressing.

Write Once, Run Anywhere

Java Programming Fundamentals

1- What is Java?
Java is a popular programming language, created in 1995. It is a powerful general-
purpose programming language. According to Oracle, the company that owns Java,
Java runs on 3 billion devices worldwide, which makes Java one of the most popular
programming languages.

It is used for:

• Mobile applications (specially Android apps) and desktop applications.
• Web applications
• Games
• Database connection and big data processing
• And much, much more!

Our Java tutorial will guide you to learn Java one step at a time.

2- Why Use Java?
• Java works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc.)
• It is one of the most popular programming language in the world
• It is easy to learn and simple to use
• It is open-source and free
• It is secure, fast and powerful
• It has a huge community support (tens of millions of developers)
• Java is an object oriented language which gives a clear structure to programs

and allows code to be reused, lowering development costs
• As Java is close to C++ and C#, it makes it easy for programmers to switch to

Java or vice versa

1

https://www.w3schools.com/cpp/default.asp
https://www.w3schools.com/cs/default.asp

Java Programming Fundamentals

3- Java Quickstart
In Java, every application begins with a class name, and that class must match the
filename. Let's create our first Java file, called MyClass.java. The file should contain
a "Hello World" message and print it to the screen, which is written with the
following code:

When you run the program, the output will be:

Hello World

Example explained

Public class MyClass { ... }

 In Java, every application begins with a class definition. Every line of code must be
inside a class. In our example, we named the class MyClass. A class should always

start with an uppercase first letter.

Note: Java is case-sensitive: "MyClass" and "myclass" has different meaning.

The name of the java file must match the class name.

public static void main(String[] args) { ... }

This is the main method. Every application in Java must contain the main method.

2

Java Programming Fundamentals
The Java compiler starts executing the code from the main method. The main method
must be inside the class definition.

System.out.println("Hello, World!");

The following code prints the string inside quotation marks Hello World to
standard output (your screen). Notice, this statement is inside the main function,
which is inside the class definition.

4- Java Variables and (Primitive) Data Types

In this tutorial, you will learn about variables, how to create them, and different data
types that Java programming language supports for creating variables.

Java Variables

A variable is a location in memory (storage area) to hold data.

To indicate the storage area, each variable should be given a unique name (identifier).

How to declare variables in Java?

Here's an example to declare a variable in Java.

int price = 80;

Here, price is a variable of int data type and is assigned value 80. Meaning, the price
variable can store integer values. You will learn about Java data types in detail later in
the article.

In the example, we have assigned value to the variable during declaration. However,
it's not mandatory. You can declare variables without assigning the value, and later
you can store the value as you wish. For example,

int price;
price = 80;

3

Java Programming Fundamentals
The value of a variable can be changed in the program, hence the name 'variable'. For
example,

int price = 80;
...
price = 90;

Java is a statically-typed language. It means that all variables must be declared before
they can be used.

Also, you cannot change the data type of a variable in Java within the same scope.
So, you cannot do something like this.

int price = 80;
...
float price;

Java Primitive Data Types

In Java all variables must be declared before they can be used.

int price;

Here, price is a variable, and the data type of the variable is int. The int data type

determines that the price variable can only contain integers.

In simple terms, a variable's data type determines the values a variable can store.
There are 8 data types predefined in Java programming language, known as primitive
data types.

Primitive Data Types

boolean

• The boolean data type has two possible values, either true or false.

• Default value: false.

• They are usually used for true/false conditions. For example,

4

Java Programming Fundamentals

Output: true

byte

• The byte data type can have values from -128 to 127 (1 byte)

• It's used instead of int or other integer data types to save memory if it's

certain that the value of a variable will be within [-128, 127].
• Default value: 0
• Example:

Output: 124

short

• The short data type can have values from -32768 to 32767 (2 bytes)

• It's used instead of other integer data types to save memory if it's certain that
the value of the variable will be within [-32768, 32767].

• Default value: 0
• Example:

5

Java Programming Fundamentals

Output: -200

int
• The int data type can have values from -2,147,483,648 to 2,147,483,647 (4

bytes)
• Default value: 0
• Example:

Output: -4250000

long
• The long data type can have values from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807 (8 bytes).
• Default value: 0

6

Java Programming Fundamentals
• Example:

Output: -42332200000

float
• Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits (4 bytes)
• Default value: 0.0 (0.0f)
• Example:

Output: -42.3

Notice that, we have used -42.3f instead of -42.3. It's because -42.3 is a

double literal. To tell the compiler to treat -42.3 as float rather than double,

you need to use f or F.

double
• Stores fractional numbers. Sufficient for storing 15 decimal digits (8 bytes)
• Default value: 0.0 (0.0d)
• Example:

7

Java Programming Fundamentals

Output: - 42.3

char
• It's a 16-bit Unicode character (2 bytes)
• The minimum value of the char data type is '\u0000' (0). The maximum

value of the char data type is '\uffff'.

• Stores a single character/letter or ASCII values
• Example:

Output:Q

You get the output Q because the Unicode value of Q is '\u0051'.

Here is another example:

8

Java Programming Fundamentals
Output:
9
A

When you print letter1, you will get 9 because letter1 is assigned character '9'.

When you print letter2, you get A because the ASCII value of 'A' is 65.

String
Java also provides support for character strings via java.lang.String class.

Here's how you can create a String object in Java:

myString = "Programming is awesome";

5- Java Operators

Operators are special symbols (characters) that carry out operations on operands
(variables and values). For example, + is an operator that performs addition.

Java divides the operators into the following groups:

• Arithmetic operators
• Assignment operators
• Relational operators
• Logical operators
• Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

9

Java Programming Fundamentals

Java Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the value 10 to a

variable called x:

Example

int x = 10;

The addition assignment operator (+=) adds a value to a variable:

Example

int x = 10;
x += 5;

A list of all assignment operators:

10

Java Programming Fundamentals

Java Relational (Comparison) Operators

Comparison operators are used to compare two values. It determines the relationship
between the two operands. Depending on the relationship, it is evaluated to either
true or false.

11

Java Programming Fundamentals

Java Logical Operators

Logical operators are used to determine the logic between variables or values:

6- Java Basic Input and Output
In Java, you can simply use

System.out.println(); or

System.out.print(); or

System.out.printf();

12

Java Programming Fundamentals
Difference between println(), print() and printf()

• print() - It prints string inside the quotes.

• println() - It prints string inside the quotes similar like print() method.

Then the cursor moves to the beginning of the next line.
• printf() - Tt provides string formatting (similar to printf in C/C++

programming).

Example: print() and println()

Example: Print Concatenated Strings

13

https://www.programiz.com/cpp-programming/library-function/cstdio/printf
https://www.programiz.com/cpp-programming/library-function/cstdio/printf

Java Programming Fundamentals

Output:

I am awesome.
Number = -10.6

In the above example, notice the line,

System.out.println("I am " + "awesome.");

Here, we have used the + operator to concatenate (join) the two strings: "I am " and

"awesome.".

And also, the line,

System.out.println("Number = " + number);

Here, first the value of variable number is evaluated. Then, the value is concatenated
to the string: "Number = "

Java Input

in this tutorial, you will learn to get input from user using the object of Scanner
class.

In order to use the object of Scanner, we need to import java.util.Scanner
package.

import java.util.Scanner;

14

Java Programming Fundamentals
Then, we need to create an object of the Scanner class. We can use the object to

take input from the user.

Example: Get Integer Input From the User

Output:

Enter an integer: 23
You entered 23

15

Java Programming Fundamentals
In the above example, we have created an object named input of the Scanner class.

We then call the nextInt() method of the Scanner class to get an integer input

from the user.

Similarly, we can use nextLong(), nextFloat(), nextDouble(), and

next() methods to get long, float, double, and string input respectively

from the user.

Example: Get float, double and String Input

16

Java Programming Fundamentals

7- Java Strings
Strings are used for storing text.

A String variable contains a collection of characters surrounded by double quotes:

Example

Create a variable of type String and assign it a value:

String greeting = "Hello";

String Length

A String in Java is actually an object, which contain methods that can perform certain
operations on strings. For example, the length of a string can be found with the
length() method:

Example

More String Methods

There are many string methods available, for example toUpperCase() and

toLowerCase():

17

Java Programming Fundamentals
Example

Finding a Character in a String

The indexOf() method returns the index (the position) of the first occurrence of a

specified text in a string (including whitespace):

Example

String Concatenation

The + operator can be used between strings to combine them. This is called

concatenation:

Example

You can also use the concat() method to concatenate two strings:

Example

18

Java Programming Fundamentals
Special Characters

Because strings must be written within quotes, Java will misunderstand this string,
and generate an error:

String txt = "We are the so-called "Vikings" from the
north.";

The solution to avoid this problem, is to use the backslash escape character.

The backslash (\) escape character turns special characters into string characters:

The sequence \" inserts a double quote in a string:

Example

String txt = "We are the so-called \"Vikings\" from the
north.";

The sequence \' inserts a single quote in a string:

Example

String txt = "It\'s alright.";

he sequence \\ inserts a single backslash in a string:

Example

String txt = "The character \\ is called backslash.";

Adding Numbers and Strings

WARNING!

Java uses the + operator for both addition and concatenation.

19

Java Programming Fundamentals
Numbers are added. Strings are concatenated.

If you add two numbers, the result will be a number:

Example

if you add two strings, the result will be a string concatenation:

Example

8- Java Comments
Comments can be used to explain Java code, and to make it more readable. It can also
be used to prevent execution when testing alternative code.

Single-line comments start with two forward slashes (//).

Any text between // and the end of the line is ignored by Java (will not be executed).

This example uses a single-line comment before a line of code:

Example

Java Multi-line Comments

Multi-line comments start with /* and ends with */.

20

Java Programming Fundamentals
Any text between /* and */ will be ignored by Java.

This example uses a multi-line comment (a comment block) to explain the code:

Example

9- Java if, if...else Statement

The if Statement

Use the if statement to specify a block of Java code to be executed if a condition is

true.

Syntax

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an error.

In the example below, we test two values to find out if 20 is greater than 18. If the
condition is true, print some text:

Example

We can also test variables:

21

Java Programming Fundamentals
Example

The else Statement

Use the else statement to specify a block of code to be executed if the condition is

false.

Syntax

Example

The else if Statement

Use the else if statement to specify a new condition if the first condition is

false.

22

Java Programming Fundamentals
Syntax

Example

In the example above, time (22) is greater than 10, so the first condition is false.

The next condition, in the else if statement, is also false, so we move on to the

else condition since condition1 and condition2 is both false - and print to the

screen "Good evening".

However, if the time was 14, our program would print "Good day."

Short Hand If...Else (Ternary Operator)

There is also a short-hand if else, which is known as the ternary operator because it
consists of three operands. It can be used to replace multiple lines of code with a
single line. It is often used to replace simple if else statements:

23

Java Programming Fundamentals
Syntax

variable = (condition) ? expressionTrue :
expressionFalse;

Instead of writing:

Example

You can simply write:

Example

10- Java For Loop
When you know exactly how many times you want to loop through a block of code,
use the for loop instead of a while loop:

Syntax

24

Java Programming Fundamentals
Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

Example

Example explained

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If the
condition is true, the loop will start over again, if it is false, the loop will end.

Statement 3 increases a value (i++) each time the code block in the loop has been
executed.

Another Example

This example will only print even values between 0 and 10:

Example

For-Each Loop

There is also a "for-each" loop, which is used exclusively to loop through elements in
an array:

Syntax

25

Java Programming Fundamentals

The following example outputs all elements in the cars array, using a "for-each"
loop:

Example

Output:

Volvo
BMW
Ford
Mazda

11- Java While Loop
The while loop loops through a block of code as long as a specified condition is

true:

Syntax

In the example below, the code in the loop will run, over and over again, as long as a
variable (i) is less than 5:

26

Java Programming Fundamentals

Example

Note: Do not forget to increase the variable used in the condition, otherwise the loop
will never end!

The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code

block once, before checking if the condition is true, then it will repeat the loop as
long as the condition is true.

Syntax

The example below uses a do/while loop. The loop will always be executed at

least once, even if the condition is false, because the code block is executed before
the condition is tested:

Example

27

Java Programming Fundamentals
Do not forget to increase the variable used in the condition, otherwise the loop will
never end!

28

By

Dr. Amal S. Ajrash

JAVA LANGUAGE
FUNDAMENTALS / PART 2

1

1. Java Arrays

An array is a collection of similar types of data. It is a container that holds data (values) of one

single type. For example, you can create an array that can hold 100 values of int type.

In Java, arrays are a fundamental construct that allows you to store and access a large number

of values conveniently.

How to declare an array?

In Java, here is how we can declare an array.

dataType[] arrayName;

 dataType - it can be primitive data types like int, char, double, byte, etc. or Java objects

 arrayName - it is an identifier

Let's take an example,

double[] data;

Here, data is an array that can hold values of type double.

But, how many elements can array this hold?

We have to allocate memory for the array. The memory will define the number of elements

that the array can hold.

data = new Double[10];

Here, the size of the array is 10. This means it can hold 10 elements (10 double types values).

The size of an array is also known as the length of an array.

Note: Once the length of the array is defined, it cannot be changed in the program.

Let's take another example:

int[] age;

age = new int[5];

https://www.programiz.com/java-programming/variables-primitive-data-types#data-types
https://www.programiz.com/java-programming/class-objects
https://www.programiz.com/java-programming/keywords-identifiers#identifiers

2

Here, age is an array. It can hold 5 values of int type.

In Java, we can declare and allocate memory of an array in one single statement. For example,

int[] age = new int[5];

Java Array Index

In Java, each element in an array is associated with a number. The number is known as an

array index. We can access elements of an array by using those indices. For example,

int[] age = new int[5];

Here, we have an array of length 5. In the image, we can see that each element consists of a

number (array index). The array indices always start from 0.

Now, we can use the index number to access elements of the array. For example, to access the

first element of the array is we can use age[0], and the second element is accessed

using age[1] and so on.

Note: If the length of an array is n, the first element of the array will be arrayName[0] and the

last element will be arrayName[n-1].

If we did not store any value to an array, the array will store some default value (0 for int type

and false for boolean type) by itself. For example,

class ArrayExample {

 public static void main(String[] args) {

 // create an array of length 5

 int[] age = new int[5];

 // access each element of the array using the index number

3

 System.out.println(age[0]);

 System.out.println(age[1]);

 System.out.println(age[2]);

 System.out.println(age[3]);

 System.out.println(age[4]);

 }

}

Output:

0

0

0

0

0

In the above example, we have created an array named age. However, we did not assign any

values to the array. Hence when we access the individual elements of the array, the default

values are printed to the screen.

Here, we are individually accessing the elements of the array. There is a better way to access

elements of the array using a loop (generally for-loop). For example,

class ArrayExample {

 public static void main(String[] args) {

 // create an array of length 5

 int[] age = new int[5];

 // access elements using of the array

 for (int i = 0; i < 5; ++i) {

 System.out.println(age[i]);

 }

 }

}

Output:

0

0

0

0

https://www.programiz.com/java-programming/for-loop

4

0

How to initialize arrays in Java?

In Java, we can initialize arrays during declaration or you can initialize later in the program as

per your requirement.

Initialize an Array During Declaration

Here's how you can initialize an array during declaration.

int[] age = {12, 4, 5, 2, 5};

This statement creates an array named age and initializes it with the value provided in the curly

brackets.

The length of the array is determined by the number of values provided inside the curly braces

separated by commas. In our example, the length of age is 5.

Let's write a simple program to print elements of an array.

class ArrayExample {

 public static void main(String[] args) {

 // create an array

 int[] age = {12, 4, 5, 2, 5};

 // access elements of tha arau

 for (int i = 0; i < 5; ++i) {

 System.out.println("Element at index " + i +": " + age[i]);

 }

 }

}

5

Output:

Element at index 0: 12

Element at index 1: 4

Element at index 2: 5

Element at index 3: 2

Element at index 4: 5

How to access array elements?

We can easily access and alter elements of an array by using its numeric index. For example,

class ArrayExample {

 public static void main(String[] args) {

 int[] age = new int[5];

 // insert 14 to third element

 age[2] = 14;

 // insert 34 to first element

 age[0] = 34;

 for (int i = 0; i < 5; ++i) {

 System.out.println("Element at index " + i +": " + age[i]);

 }

 }

}

Output:

Element at index 0: 34

Element at index 1: 0

Element at index 2: 14

Element at index 3: 0

Element at index 4: 0

Example: Java arrays

The program below computes sum and average of values stored in an array of type int.

6

class SumAverage {

 public static void main(String[] args) {

 int[] numbers = {2, -9, 0, 5, 12, -25, 22, 9, 8, 12};

 int sum = 0;

 Double average;

 // for each loop is used to access elements

 for (int number: numbers) {

 sum += number;

 }

 int arrayLength = numbers.length;

 // Change sum and arrayLength to double as average is in double

 average = ((double)sum / (double)arrayLength);

 System.out.println("Sum = " + sum);

 System.out.println("Average = " + average);

 }

}

Output:

Sum = 36

Average = 3.6

In the above example, we have created an array of named numbers. We have used

the for...each loop to access each element of the array. To learn more about for...each loop.

Inside the loop, we are calculating the sum of each element. Notice the line,

int arrayLength = number.length;

Here, we are using the length attribute of the array to calculate the size of the array. We then

calculate the average using:

average = ((double)sum / (double)arrayLength);

As you can see, we are converting the int value into double. This is called type casting in Java.

Multidimensional Arrays

7

Arrays we have mentioned till now are called one-dimensional arrays. However, we can

declare multidimensional arrays in Java.

A multidimensional array is an array of arrays. That is, each element of a multidimensional

array is an array itself. For example,

double[][] matrix = {{1.2, 4.3, 4.0},{4.1, -1.1}};

Here, we have created a multidimensional array named matrix. It is a 2-dimensional array.

2.Java Multidimensional Arrays

The Java multidimensional array using 2-dimensional arrays and 3-dimensional arrays. A

multidimensional array is an array of arrays. Each element of a multidimensional array is an

array itself. For example,

int[][] a = new int[3][4];

Here, we have created a multidimensional array named a. It is a 2-dimensional array, that can

hold a maximum of 12 elements,

Remember, Java uses zero-based indexing, that is, indexing of arrays in Java starts with 0 and

not 1. Let's take another example of the multidimensional array. This time we will be creating

a 3-dimensional array. For example,

8

String[][][] data = new String[3][4][2];

Here, data is a 3d array that can hold a maximum of 24 (3*4*2) elements of type String.

How to initialize a 2d array in Java?

Here is how we can initialize a 2-dimensional array in Java.

int[][] a = {

 {1, 2, 3},

 {4, 5, 6, 9},

 {7},

};

As we can see, each element of the multidimensional array is an array itself. And also, unlike

C/C++, each row of the multidimensional array in Java can be of different lengths.

Example: 2-dimensional Array

class MultidimensionalArray {

 public static void main(String[] args) {

 // create a 2d array

 int[][] a = {

 {1, 2, 3},

 {4, 5, 6, 9},

9

 {7},

 };

 // calculate the length of each row

 System.out.println("Length of row 1: " + a[0].length);

 System.out.println("Length of row 2: " + a[1].length);

 System.out.println("Length of row 3: " + a[2].length);

 }

}

Output:

Length of row 1: 3

Length of row 2: 4

Length of row 3: 1

In the above example, we are creating a multidimensional array named a. Since each

component of a multidimensional array is also an array (a[0], a[1] and a[2] are also arrays).

Here, we are using the length attribute to calculate the length of each row.

Example: Print all elements of 2d array Using Loop

class MultidimensionalArray {

 public static void main(String[] args) {

 int[][] a = {

 {1, -2, 3},

 {-4, -5, 6, 9},

 {7},

 };

 for (int i = 0; i < a.length; ++i) {

 for(int j = 0; j < a[i].length; ++j) {

 System.out.println(a[i][j]);

 }

 }

 }

}

Output:

1

-2

10

3

-4

-5

6

9

7

We can also use the for...each loop to access elements of the multidimensional array. For

example,

class MultidimensionalArray {

 public static void main(String[] args) {

 // create a 2d array

 int[][] a = {

 {1, -2, 3},

 {-4, -5, 6, 9},

 {7},

 };

 // first for...each loop access the individual array

 // inside the 2d array

 for (int[] innerArray: a) {

 // second for...each loop access each element inside the row

 for(int data: innerArray) {

 System.out.println(data);

 }

 }

 }

}

Output:

1

-2

3

-4

-5

6

https://www.programiz.com/java-programming/enhanced-for-loop

11

9

7

In the above example, we are have created a 2d array named a. We then used for loop

and for...each loop to access each element of the array.

3.Java Class and Objects

Java is an object-oriented programming language. It is based on the concept of objects. These

objects share two characteristics:

 state (fields)

 behavior (methods)

For example,

1. Lamp is an object

State: on or off

Behavior: turn on or turn off

2. Bicycle is an object

States: current gear, two wheels, number of gear, etc

Behavior: braking, accelerating, changing gears, etc

Principles of Object-oriented Programming:

 Encapsulation

 Inheritance

 Polymorphism

The focus of object-oriented programming is to break a complex programming task into

objects that contain fields (to store data) and methods (to perform operations on fields).

https://www.programiz.com/java-programming/encapsulation
https://www.programiz.com/java-programming/inheritance
https://www.programiz.com/java-programming/polymorphism

12

Java Class

A class is a blueprint for the object. We can think of the class as a sketch (prototype) of a

house. It contains all the details about the floors, doors, windows, etc. Based on these

descriptions we build the house. House is the object.Since many houses can be made from the

same description, we can create many objects from a class.

How to define a class in Java?

Here's how we can define a class in Java:

class ClassName {

 // variables

 // methods

}

For example,

class Lamp {

 // instance variable

 private boolean isOn;

 // method

 public void turnOn() {

 isOn = true;

 }

 // method

 public void turnOff() {

 isOn = false;

 }

}

Here, we have created a class named Lamp.

The class has one variable named isOn and two methods turnOn() and turnOff(). These variables

and methods defined within a class are called members of the class.

13

In the above example, we have used keywords private and public. These are known as access

modifiers.

Java Objects

An object is called an instance of a class. For example, suppose Animal is a class

then Cat, Dog, Horse, and so on can be considered as objects of Animal class.

Here is how we can create objects in Java:

className object = new className();

Here, we are using the constructor className() to create the object. Constructors have the same

name as the class and are similar to methods. Let's see how we can create objects of

the Lamp class.

// l1 object

Lamp l1 = new Lamp();

// l2 object

Lamp l2 = new Lamp();

Here, we have created objects named l1 and l2 using the constructor of Lamp class (Lamp()).

Objects are used to access members of a class. Let's create objects of the Lamp class

How to access members?

Objects are used to access members of the class. We can access members (call methods and

access instance variables) by using the . operator. For example,

class Lamp {

 turnOn() {...}

}

// create object

Lamp l1 = new Lamp();

// access method turnOn()

l1.turnOn();

This statement calls the turnOn() method inside the Lamp class for the l1 object.

14

When you call the method using the above statement, all statements within the body of

the turnOn() method is executed. Then, the control of the program jumps back to the statement

following l1.turnOn();

Similarly, the instance variable can be accessed as:

class Lamp {

 boolean isOn;

}

// create object

Lamp l1 = new Lamp();

// access method turnOn()

l1.isOn = true;

Example: Java Class and Objects

class Lamp {

 boolean isOn;

15

 void turnOn() {

 // initialize variable with value true

 isOn = true;

 System.out.println("Light on? " + isOn);

 }

 void turnOff() {

 // initialize variable with value false

 isOn = false;

 System.out.println("Light on? " + isOn);

 }

}

class Main {

 public static void main(String[] args) {

 // create objects l1 and l2

 Lamp l1 = new Lamp();

 Lamp l2 = new Lamp();

 // call methods turnOn() and turnOff()

 l1.turnOn();

 l2.turnOff();

 }

}

Output:

Light on? true

Light on? false

In the above program,

1. We have created a class named Lamp.

2. The class has an instance variable isOn and two methods turnOn() and turnOff().

3. Inside the Main class, we have created two objects l1 and l2 of the Lamp class.

4. We then use the l1 object to call turnOn() and the l2 object to call turnOff():

l1.turnOn();

16

l2.turnOff();

5. The turnOn() method sets the isOn variable of l1 object to true. and prints the output. Similarly,

the turnOff() method sets the isOn variable of the l2 object to false and prints the output.

Note: The variables defined inside a class are known as instance variables for a reason. When

an object is created, it is called an instance of the class.

Each instance contains its own copy of the variables defined inside the class. Hence, known

as instance variables. For example, the isOn variable is different for objects l1 and l2.

4.Java Methods

What is a method?

In mathematics, we might have studied about functions. For example, f(x) = x2 is a function that

returns a squared value of x.

If x = 2, then f(2) = 4

If x = 3, f(3) = 9

and so on.

Similarly, in computer programming, a function is a block of code that performs a specific

task.

In object-oriented programming, the method is a jargon used for function. Methods are bound

to a class and they define the behavior of a class.

Types of Java methods

Depending on whether a method is defined by the user, or available in the standard library,

there are two types of methods in Java:

 Standard Library Methods

 User-defined Methods

Standard Library Methods

17

The standard library methods are built-in methods in Java that are readily available for use.

These standard libraries come along with the Java Class Library (JCL) in a Java archive (*.jar)

file with JVM and JRE.

For example,

 print() is a method of java.io.PrintSteam. The print("...") method prints the string inside quotation

marks.

 sqrt() is a method of Math class. It returns the square root of a number.

Here's a working example:

public class Main {

 public static void main(String[] args) {

 // using the sqrt() method

 System.out.print("Square root of 4 is: " + Math.sqrt(4));

 }

}

Output:

Square root of 4 is: 2.0

User-defined Method

We can also create methods of our own choice to perform some task. Such methods are called

user-defined methods.

How to create a user-defined method?

Here is how we can create a method in Java:

public static void myMethod() {

 System.out.println("My Function called");

}

Here, we have created a method named myMethod(). We can see that we have used

the public, static and void before the method name.

18

 public - access modifier. It means the method can be accessed from anywhere. static - It means

that the method can be accessed without any objects.

 void - It means that the method does not return any value. This is a simple example of how we

can create a method. However, the complete syntax of a method definition in Java is:

modifier static returnType nameOfMethod (parameters) {

 // method body

}

Here,

 modifier - It defines access types whether the method is public, private and so on.

 static - If we use the static keyword, it can be accessed without creating objects.

For example, the sqrt() method of standard Math class is static. Hence, we can directly

call Math.sqrt() without creating an instance of Math class.

 returnType - It specifies what type of value a method returns For example if a method

has int return type then it returns an integer value.

A method can return native data types (int, float, double, etc), native objects (String, Map, List,

etc), or any other built-in and user-defined objects.

If the method does not return a value, its return type is void.

 nameOfMethod - It is an identifier that is used to refer to the particular method in a program.

We can give any name to a method. However, it is more conventional to name it after the tasks

it performs. For example, calculateArea(), display(), and so on.

 parameters (arguments) - These are values passed to a method. We can pass any number of

arguments to a method.

 method body - It includes the programming statements that are used to perform some tasks.

The method body is enclosed inside the curly braces { }.

How to call a Java Method?

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://www.programiz.com/java-programming/keywords-identifiers#identifiers

19

Now that we know how to define methods, we need to learn to use them. For that, we have to

call the method. Here's how

myMethod();

This statement calls myMethod() method that was declared earlier.

Working of the method call

in Java

1. While executing the program code, it encounters myFunction(); in the code.

2. The execution then branches to the myFunction() method and executes code inside the body of

the method.

3. After the execution of the method body, the program returns to the original state and executes

the next statement after the method call.

Example: Java Method

Let's see how we can use methods in a Java program.

class Main {

 public static void main(String[] args) {

20

 System.out.println("About to encounter a method.");

 // method call

 myMethod();

 System.out.println("Method was executed successfully!");

 }

 // method definition

 private static void myMethod(){

 System.out.println("Printing from inside myMethod()!");

 }

}

Output:

About to encounter a method.

Printing from inside myMethod().

Method was executed successfully!

In the above program, we have a method named myMethod(). The method doesn't accept any

arguments. Also, the return type of the method is void (means doesn't return any value).

Here, the method is static. Hence we have called the method without creating an object of the

class. Let's see another example,

class Main {

 public static void main(String[] args) {

 // create object of the Output class

 Output obj = new Output();

 System.out.println("About to encounter a method.");

 // calling myMethod() of Output class

 obj.myMethod();

 System.out.println("Method was executed successfully!");

 }

}

class Output {

 // public: this method can be called from outside the class

21

 public void myMethod() {

 System.out.println("Printing from inside myMethod().");

 }

}

Output:

About to encounter a method.

Printing from inside myMethod().

Method was executed successfully!

In the above example, we have created a method named myMethod(). The method is inside a

class named Output.

Since the method is not static, it is called using the object obj of the class.

obj.myMethod();

Method Arguments and Return Value

Java method can have zero or more parameters. And, it may also return some value.

Example: Return Value from Method

Let's take an example of a method returning a value.

class SquareMain {

 public static void main(String[] args) {

 int result;

 // call th method and store returned value

 result = square();

 System.out.println("Squared value of 10 is: " + result);

 }

 public static int square() {

 // return statement

 return 10 * 10;

 }

}

Output:

22

Squared value of 10 is: 100

In the above program, we have created a method named square(). This method does not accept

any arguments and returns value 10 *10.

Here, we have mentioned the return type of the method as int. Hence, the method should

always return an integer value.

Representation of a method returning a value

As we can see, the scope of this method is limited as it always returns the same value. Now,

let's modify the above code snippet so that instead of always returning the squared value of

10, it returns the squared value of any integer passed to the method.

Example: Method Accepting Arguments and Returning Value

public class Main {

 public static void main(String[] args) {

 int result, n;

 n = 3;

 result = square(n);

 System.out.println("Square of 3 is: " + result);

 n = 4

 result = square(n);

 System.out.println("Square of 4 is: " + result);

 }

 // method

 static int square(int i) {

23

 return i * i;

 }

}

Output:

Squared value of 3 is: 9

Squared value of 4 is: 16

Here, the square() method accepts an argument i and returns the square of i. The returned value

is stored in the variable result.

Passing arguments and returning a value from a method in Java

If we pass any other data type instead of int, the compiler will throw an error. It is because

Java is a strongly typed language.

The argument n passed to the getSquare() method during the method call is called an actual

argument.

result = getSquare(n);

The argument i accepted by the method definition is known as a formal argument. The type

of formal argument must be explicitly typed.

public static int square (int i) {...}

We can also pass more than one argument to the Java method by using commas. For example,

24

public class Main {

 // method definition

 public static int getIntegerSum (int i, int j) {

 return i + j;

 }

 // method definition

 public static int multiplyInteger (int x, int y) {

 return x * y;

 }

 public static void main(String[] args) {

 // calling methods

 System.out.println("10 + 20 = " + getIntegerSum(10, 20));

 System.out.println("20 x 40 = " + multiplyInteger(20, 40));

 }

}

Output:

10 + 20 = 30

20 x 40 = 800

Note: The data type of actual and formal arguments should match, i.e., the data type of first

actual argument should match the type of first formal argument. Similarly, the type of second

actual argument must match the type of second formal argument and so on.

What are the advantages of using methods?

1. The main advantage is code reusability. We can write a method once, and use it multiple

times. We do not have to rewrite the entire code each time. Think of it as, "write once, reuse

multiple times". For example,

25

public class Main {

 // method defined

 private static int getSquare(int x){

 return x * x;

 }

 public static void main(String[] args) {

 for (int i = 1; i <= 5; i++) {

 // method call

 int result = getSquare(i);

 System.out.println("Square of " + i + " is: " + result);

 }

 }

}

Output:

Square of 1 is: 1

Square of 2 is: 4

Square of 3 is: 9

Square of 4 is: 16

Square of 5 is: 25

In the above program, we have created the method named getSquare() to calculate the square

of a number. Here, the same method is used to calculate the square of numbers less than 6.

Hence, we use the same method again and again.

2. Methods make code more readable and easier to debug. For example, getSquare() method is

so readable, that we can know what this method will be calculating the square of a number.

5.Java String

In Java, a string is a sequence of characters. For example, "hello" is a string containing a

sequence of characters 'h', 'e', 'l', 'l', and 'o'.

https://www.programiz.com/java-programming/constructors
https://www.programiz.com/java-programming/constructors

26

Unlike other programming languages, strings in Java are not primitive types (like int, char, etc).

Instead, all strings are objects of a predefined class named String. For example,

// create a string

String type = "java programming";

Here, we have created a string named type. Here, we have initialized the string with "java

programming". In Java, we use double quotes to represent a string.

The string is an instance of the String class.

Note: All string variables are instances of the String class.

Java String Methods

Java String provides various methods that allow us to perform different string operations. Here

are some of the commonly used string methods.

Methods Description

concat() joins the two strings together

equals() compares the value of two strings

charAt() returns the character present in the specified location

getBytes() converts the string to an array of bytes

indexOf() returns the position of the specified character in the string

length() returns the size of the specified string

replace() replaces the specified old character with the specified new character

substring() returns the substring of the string

split() breaks the string into an array of strings

toLowerCase() converts the string to lowercase

toUpperCase() converts the string to uppercase

valueOf() returns the string representation of the specified data

27

Let's take a few examples.

Example 1: Java find string's length

class Main {

 public static void main(String[] args) {

 // create a string

 String greet = "Hello! World";

 System.out.println("The string is: " + greet);

 //checks the string length

 System.out.println("The length of the string: " + greet.length());

 }

}

Output

The string is: Hello! World

The length of the string: 12

In the above example, we have created a string named greet. Here we have used

the length() method to get the size of the string.

Example 2: Java join two strings using concat()

class Main {

 public static void main(String[] args) {

 // create string

 String greet = "Hello! ";

 System.out.println("First String: " + greet);

 String name = "World";

 System.out.println("Second String: " + name);

 // join two strings

 String joinedString = greet.concat(name);

 System.out.println("Joined String: " + joinedString);

 }

}

Output

28

First String: Hello!

Second String: World

Joined String: Hello! World

In the above example, we have created 2 strings named greet and name.

Here, we have used the concat() method to join the strings. Hence, we get a new string

named joinedString.

In Java, we can also join two strings using the + operator.

Example 3: Java join strings using + operator

class Main {

 public static void main(String[] args) {

 // create string

 String greet = "Hello! ";

 System.out.println("First String: " + greet);

 String name = "World";

 System.out.println("Second String: " + name);

 // join two strings

 String joinedString = greet + name;

 System.out.println("Joined String: " + joinedString);

 }

}

Output

First String: Hello!

Second String: World

Joined String: Hello! World

Here, we have used the + operator to join the two strings.

Example 4: Java compare two strings

class Main {

 public static void main(String[] args) {

29

 // create strings

 String first = "java programming";

 String second = "java programming";

 String third = "python programming";

 // compare first and second strings

 boolean result1 = first.equals(second);

 System.out.println("Strings first and second are equal: " + result1);

 //compare first and third strings

 boolean result2 = first.equals(third);

 System.out.println("Strings first and third are equal: " + result2);

 }

}

Output

Strings first and second are equal: true

Strings first and third are equal: false

In the above example, we have used the equals() method to compare the value of two strings.

The method returns true if both strings are the same otherwise it returns false.

Note: We can also use the == operator and compareTo() method to make a comparison between

2 strings.

Example 5: Java get characters from a string

class Main {

 public static void main(String[] args) {

 // create string using the string literal

 String greet = "Hello! World";

30

 System.out.println("The string is: " + greet);

 // returns the character at 3

 System.out.println("The character at : " + greet.charAt(3));

 // returns the character at 7

 System.out.println("The character at 7: " + greet.charAt(7));

 }

}

Output

The string is: Hello! World

The character at 3: l

The character at 7: W

In the above example, we have used the charAt() method to access the character from the

specified position.

Example 6: Java Strings other methods

class Main {

 public static void main(String[] args) {

 // create string using the new keyword

 String example = new String("Hello! World");

 // returns the substring World

 System.out.println("Using the subString(): " + example.substring(7));

 // converts the string to lowercase

 System.out.println("Using the toLowerCase(): " + example.toLowerCase());

 // converts the string to uppercase

 System.out.println("Using the toUpperCase(): " + example.toUpperCase());

 // replaces the character '!' with 'o'

 System.out.println("Using the replace(): " + example.replace('!', 'o'));

 }

}

Output

Using the subString(): World

Using the toLowerCase(): hello! world

Using the toUpperCase(): HELLO! WORLD

31

Using the replace(): Helloo World

In the above example, we have created a string named example using the new keyword.

Here,

 the substring() method returns the string World

 the toLowerCase() method converts the string to the lower case

 the toUpperCase() method converts the string to the upper case

 the replace() method replaces the character '!' with 'o'.

6.Java Recursion

In Java, a method that calls itself is known as a recursive method. And, this process is known

as recursion. A physical world example would be to place two parallel mirrors facing each

other. Any object in between them would be reflected recursively.

How Recursion works?

Working of Java Recursion

In the above example, we have called the recurse() method from inside the main method.

(normal method call). And, inside the recurse() method, we are again calling the same recurse

method. This is a recursive call. In order to stop the recursive call, we need to provide some

conditions inside the method. Otherwise, the method will be called infinitely. Hence, we use

the if...else statement (or similar approach) to terminate the recursive call inside the method.

https://www.programiz.com/java-programming/methods
https://www.programiz.com/java-programming/if-else-statement

32

Example: Factorial of a Number Using Recursion

class Factorial {

 static int factorial(int n) {

 if (n != 0) // termination condition

 return n * factorial(n-1); // recursive call

 else

 return 1;

 }

 public static void main(String[] args) {

 int number = 4, result;

 result = factorial(number);

 System.out.println(number + " factorial = " + result);

 }

}

Output:

4 factorial = 24

In the above example, we have a method named factorial(). The factorial() is called from

the main() method. with the number variable passed as an argument.

Here, notice the statement,

return n * factorial(n-1);

The factorial() method is calling itself. Initially, the value of n is 4 inside factorial(). During the

next recursive call, 3 is passed to the factorial() method. This process continues until n is equal

to 0.

When n is equal to 0, the if statement returns false hence 1 is returned. Finally, the

accumulated result is passed to the main() method.

Working of Factorial Program

The image below will give you a better idea of how the factorial program is executed using

recursion.

33

Recursion

Advantages and Disadvantages of Recursion

When a recursive call is made, new storage locations for variables are allocated on the stack.

As, each recursive call returns, the old variables and parameters are removed from the stack.

Hence, recursion generally uses more memory and is generally slow.

34

On the other hand, a recursive solution is much simpler and takes less time to write, debug

and maintain.

7.Java Stack Class

In this tutorial, we will learn about the Java Stack class and its methods with the help of

examples.

The Java collections framework has a class named Stack that provides the functionality of the

stack data structure.

The Stack class extends the Vector class.

Stack Implementation

In stack, elements are stored and accessed in Last In First Out manner. That is, elements are

added to the top of the stack and removed from the top of the stack.

35

Creating a Stack

In order to create a stack, we must import the java.util.Stack package first. Once we import the

package, here is how we can create a stack in Java.

Stack<Type> stacks = new Stack<>();

Here, Type indicates the stack's type. For example,

// Create Integer type stack

Stack<Integer> stacks = new Stack<>();

// Create String type stack

Stack<String> stacks = new Stack<>();

Stack Methods

Since Stack extends the Vector class, it inherits all the methods Vector. To learn about

different Vector method.

Besides these methods, the Stack class includes 5 more methods that distinguish it from Vector.

push() Method

To add an element to the top of the stack, we use the push() method. For example,

import java.util.Stack;

class Main {

 public static void main(String[] args) {

 StackString> animals= new Stack<>();

 // Add elements to Stack

 animals.push("Dog");

 animals.push("Horse");

36

 animals.push("Cat");

 System.out.println("Stack: " + animals);

 }

}

Output

Stack: [Dog, Horse, Cat]

pop() Method

To remove an element from the top of the stack, we use the pop() method. For example,

import java.util.Stack;

class Main {

 public static void main(String[] args) {

 Stack<String> animals= new Stack<>();

 // Add elements to Stack

 animals.push("Dog");

 animals.push("Horse");

 animals.push("Cat");

 System.out.println("Initial Stack: " + animals);

 // Remove element stacks

 String element = animals.pop();

 System.out.println("Removed Element: " + element);

 }

}

Output

Initial Stack: [Dog, Horse, Cat]

Removed Element: Cat

peek() Method

The peek() method returns an object from the top of the stack. For example,

import java.util.Stack;

class Main {

37

 public static void main(String[] args) {

 Stack<String> animals= new Stack<>();

 // Add elements to Stack

 animals.push("Dog");

 animals.push("Horse");

 animals.push("Cat");

 System.out.println("Stack: " + animals);

 // Access element from the top

 String element = animals.peek();

 System.out.println("Element at top: " + element);

 }

}

Output

Stack: [Dog, Horse, Cat]

Element at top: Cat

search() Method

To search an element in the stack, we use the search() method. It returns the position of the

element from the top of the stack. For example,

import java.util.Stack;

class Main {

 public static void main(String[] args) {

 Stack<String> animals= new Stack<>();

 // Add elements to Stack

 animals.push("Dog");

 animals.push("Horse");

 animals.push("Cat");

 System.out.println("Stack: " + animals);

 // Search an element

 int position = animals.search("Horse");

 System.out.println("Position of Horse: " + position);

 }

38

}

Output

Stack: [Dog, Horse, Cat]

Position of Horse: 2

empty() Method To check whether a stack is empty or not, we use the empty() method. For

example,

import java.util.Stack;

class Main {

 public static void main(String[] args) {

 Stack<String> animals= new Stack<>();

 // Add elements to Stack

 animals.push("Dog");

 animals.push("Horse");

 animals.push("Cat");

 System.out.println("Stack: " + animals);

 // Check if stack s empty

 boolean result = animals.empty();

 System.out.println("Is the stack empty? " + result);

 }

}

Output

Stack: [Dog, Horse, Cat]

Is the stack empty? false

