ABSTRACT IN JAVA

by
DR. AMAL S. AJRASH

INTRODUCTION
Abstraction: is a process of hiding the implementation details and showing only
functionality to the user. It shows only essential things to the user and hides the

internal details.

ABSTRACT CLASS & METHOD

 An abstract class is a class that is declared ”abstract” it may or may not include abstract
methods.

» A method which is declared as “abstract” and does not have implementation is known as
an abstract method.

» Syntax :

modifier abstract class className

{
abstract dataType methodName();

¥

modifier class childClass extends className

{
dataType methodName(){}

¥

Abstract classes

Any class containing an abstract method is an abstract class, you must declare the class
with the keyword abstract:
abstract class MyClass {...}

- An abstract class is incomplete

- It has “missing” method bodies

- Ifaclass is declared abstract, it cannot be instantiated
- You can extend (subclass) an abstract class

- If the subclass defines all the inherited abstract methods, it is “complete” and can be

Iinstantiated

- If the subclass does not define all the inherited abstract methods, it too must be

abstract

- You candeclare a class to be abstract even if it does not contain any abstract methods

This prevents the class from being instantiated.

- Abstract classes may or may not contain abstract methods, i.e., methods without
body (public void get();). But, if a class has at least one abstract method, then the

class must be declared abstract.

- To use an abstract class, you have to inherit it from another class, provide

implementations to the abstract methods in it.

- If you inherit an abstract class, you have to provide implementations to all the

abstract methods in it. To share code among several closely related classes.

- If classes that extend your abstract class have many common methods or fields or
require access modifiers other than public (such as protected and private). You want
to declare non-static or non-final fields. This enables you to define methods that can

access and modify the state of the object to which they belong.

Why have abstract classes?

Suppose you wanted to create a class Shape, with subclasses Oval, Rectangle, Triangle,
Hexagon, etc. You don’t want to allow creation of a “Shape” Only particular shapes make
sense, not generic ones, If Shape is abstract, you can’t create a new Shape. You can create

a new Oval, a new Rectangle, etc. Abstract classes are good for defining a general.

Examplel:
abstract class Animal //Abstract Class Declaration

{
public abstract void sound(); //Abstract Method Declaration

¥

public class Dog extends Animal //Dog inherits from Animal

{

public void sound()

{
System.out.printin("Woof");

¥

public static void main(String args[])
{

Animal obj = new Dog();
obj.sound();

¥

}
OUTPUT : Woof

Example2:
abstract class MyClass

{
public void disp()

{

System.out.printIn("Concrete method of parent class");

by
abstract public void disp2();

¥

class Demo extends MyClass

{

public void disp2()

{

System.out.printIn("overriding abstract method");
}

public class Main {

public static void main(String args|[])
{

Demo obj = new Demo();
obj.disp2();

¥

¥
OUTPUT : overriding abstract method

Example3 of Abstract Class

public abstract class Employee

{

private String name;

private String address;

public Employee(String name, String address, int number)
{

System.out.printIn(*Constructing an Employee");
this.name = name;

¥
public double computePay()

{

System.out.printin("Inside Employee computePay");

return 0.0;

k
k

Now lets try to instantiate the Employee class in the following way

public class Abstract Demo

{

public static void main(String [] args)

{

Employee e = new Employee("George W.*);
System.out.printin(*\n Call Employee ");
e.mailCheck();

¥

}
Output:

Employee.java:46: Employee is abstract; cannot be instantiated
Employee e = new Employee(*'George W”);

N1 error

If you want a class to contain a particular method but you want the actual implementation
of that method to be determined by child classes, you can declare the method in the parent
class as an abstract. abstract keyword is used to declare the method as abstract. You have
to place the abstract keyword before the method name in the method declaration. Instead

of curly braces, an abstract method will have a semoi colon (;) at the end.

Example4 of the abstract method.

public abstract class Employee
{
private String name;

public abstract double computePay();
}

Declaring a method as abstract has two consequences —
- The class containing it must be declared as abstract.

- Any class inheriting the current class must either override the abstract method or

declare itself as abstract.

- Suppose Salary class inherits the Employee class, then it should implement
computePay()
public class Salary extends Employee
{
private double salary;
double computePay()
{
System.out.printIn("Computing salary " + getName());

return salary/52;

k
¥

Example5:

public abstract class A {
int x;
public abstract void print1();
}
public abstract class B extends A {
public abstract void print2();
J print1() Al &5 Leayl B D& (o i ¥
}
public class C extends B {
11 B S8 e Ly 5 0 abstract Les s i) J1sall aaead Override deiy of sy C DS
@Override
public void printl1() {
System.out.printIn(*Class C should override the method print1()");
h
@Override
public void print2() {

System.out.printIn("Class C should override the method print2()");

public class Main {
public static void main(String[] args) {
Cc=new C(); /I C oI (s 5K pLisl Liad Lia
c.printl(); // Override ld dzé 5 C (Sl L5 A print] () Allall elexinls Lid L

c.print2(); /1 Override &l J=é 5 C (28 ey 5 Al print2() Alall ele xiuly Lidd Lia

¥

Output:
Class C should override the method print1()

Class C should override the method print2()

Example6:

public abstract class A { /] 4ie S ¢Lis) (Say ¥ 13 abstract 4c 5 A oSS
int X;
public void print() {

System.out.printIn("This is just an example.");

¥

public class Main {
public static void main(String[] args) {

A a = new A(); /I Incompatible Type: abstraction.A is abstract; cannot be
instantiated <-- [w3 ell jelaw |

¥

Output:

Exception in thread "main" java.lang.RuntimeException:

Uncompilable source code - abstraction.A is abstract; cannot be instantiated

Example?:

public abstract class A {
int X;
public void print() {

System.out.printIn("This is just an example.");

¥
public class B extends A { /] 4 35a sa oo JS & 13 A GBS (e &y B DS (4 LG L
¥
public class Main {
public static void main(String[] args) {
Bb=newB(); //B Sl (e (AS oLl Liad Lia
b.print(); 1A S e B 0381 65 S print() A1) ele siuls Liad Ua

b.x = 10; 1A GOSN e B o208 45 5 (2 X ppailall dad jaaty Liad Lia

System.out.printin("b.x contain: " + b.x); /] X _sriall dad (ia yuy Liad Lia

¥

Output:
This is just an example.

b.x contain; 10

Example8:

public abstract class A {
int x;
public void print() {
System.out.printIn("This is just an example.");

¥

public abstract void setX(int x); // & S IS Override L J=i oo <oy 13 <-- abstract
Lee 53 Al iy ety Liad Ui

public abstract int getX(); 1165 52 s2S JS Override W dziy off g 13 <-- abstract Lw
Lo 53 Adla iy yaiy Lidd
}

public class B extends A { // abstract g sl (s Wi e A2 Y Override Jas O s A e &g
GOSN B oSl o Ly

/1 setX() 4l Override Lilxé La

@Override
10

public void setX(int x) {
super.x = x;

b

/1 getX() 4l Override Liled Lia

@Override

public int getX() {

return super.x;

¥

public class Main {
public static void main(String[] args) {
Bb=newB(); //B Sl (e (A8 oLail Liad Lia
b.print(); /1 A 3N e B G L5 A print() Aall ele viul Led Lis
b.setX(55); [/ setX() Wl i b oo A LS e B DS 4l)5 521 X yaiall dad yaoiiy Liad Lia

System.out.printin("b.x contain: " + b.getX()); // getX() Wl Gi b (e X (aym Liad Lia

¥
k

Output:

This is just an example.

b.x contain: 55

11

