
QuickSort

Last Updated: 04-09-2020

Like Merge Sort, QuickSort is a Divide and Conquer algorithm. It picks

an element as pivot and partitions the given array around the picked pivot. There are

many different versions of quickSort that pick pivot in different ways.

1. Always pick first element as pivot.

2. Always pick last element as pivot (implemented below)

3. Pick a random element as pivot.

4. Pick median as pivot.

The key process in quickSort is partition(). Target of partitions is, given an array and an

element x of array as pivot, put x at its correct position in sorted array and put all

smaller elements (smaller than x) before x, and put all greater elements (greater than x)

after x. All this should be done in linear time.

Pseudo Code for recursive QuickSort function :

/* low --> Starting index, high --> Ending index */

quickSort(arr[], low, high)

{

 if (low < high)

 {

 /* pi is partitioning index, arr[pi] is now

 at right place */

 pi = partition(arr, low, high);

 quickSort(arr, low, pi - 1); // Before pi

 quickSort(arr, pi + 1, high); // After pi

 }

}

Partition Algorithm
There can be many ways to do partition, following pseudo code adopts the method

given in CLRS book. The logic is simple, we start from the leftmost element and keep

track of index of smaller (or equal to) elements as i. While traversing, if we find a

smaller element, we swap current element with arr[i]. Otherwise we ignore current

element.

Pseudo code for partition()

http://quiz.geeksforgeeks.org/merge-sort/
https://www.geeksforgeeks.org/wp-content/uploads/gq/2014/01/QuickSort2.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2014/01/QuickSort2.png

/* This function takes last element as pivot, places

 the pivot element at its correct position in sorted

 array, and places all smaller (smaller than pivot)

 to left of pivot and all greater elements to right

 of pivot */

partition (arr[], low, high)

{

 // pivot (Element to be placed at right position)

 pivot = arr[high];

 i = (low - 1) // Index of smaller element

 for (j = low; j <= high- 1; j++)

 {

 // If current element is smaller than the pivot

 if (arr[j] < pivot)

 {

 i++; // increment index of smaller element

 swap arr[i] and arr[j]

 }

 }

 swap arr[i + 1] and arr[high])

 return (i + 1)

}

Example of Quick Sort:

44 33 11 55 77 90 40 60 99 22 88

Let 44 be the Pivot element and scanning done from right to left

Comparing 44 to the right-side elements, and if right-side elements are smaller than 44,

then swap it. As 22 is smaller than 44 so swap them.

 22 33 11 55 77 90 40 60 99 44 88

Now comparing 44 to the left side element and the element must be greater than 44 then

swap them. As 55 are greater than 44 so swap them.

22 33 11 44 77 90 40 60 99 55 88

Recursively, repeating steps 1 & steps 2 until we get two lists one left from pivot

element 44 & one right from pivot element.

22 33 11 40 77 90 44 60 99 55 88

Swap with 77:

22 33 11 40 44 90 77 60 99 55 88

Now, the element on the right side and left side are greater than and smaller

than 44 respectively.

Now we get two sorted lists

And these sublists are sorted under the same process as above done.

These two sorted sublists side by side.

