

1

Greedy Algorithms

The Greedy algorithm could be understood very well with a well-known
problem referred to as Knapsack problem. Although the same problem could
be solved by employing other algorithmic approaches, Greedy approach
solves Fractional Knapsack problem reasonably in a good time. Let us
discuss the Knapsack problem in detail.

Knapsack Problem

Given a set of items, each with a weight and a value, determine a subset of
items to include in a collection so that the total weight is less than or equal to
a given limit and the total value is as large as possible.

The knapsack problem is in combinatorial optimization problem. It appears
as a subproblem in many, more complex mathematical models of real-world
problems. One general approach to difficult problems is to identify the most
restrictive constraint, ignore the others, solve a knapsack problem, and
somehow adjust the solution to satisfy the ignored constraints.

Applications

In many cases of resource allocation along with some constraint, the problem
can be derived in a similar way of Knapsack problem. Following is a set of
example.

 Finding the least wasteful way to cut raw materials

 portfolio optimization

 Cutting stock problems

Problem Scenario

A thief is robbing a store and can carry a maximal weight of W into his
knapsack. There are n items available in the store and weight of ith item
is wi and its profit is pi. What items should the thief take?

In this context, the items should be selected in such a way that the thief will
carry those items for which he will gain maximum profit. Hence, the objective
of the thief is to maximize the profit.

Based on the nature of the items, Knapsack problems are categorized as

 Fractional Knapsack

 Knapsack

2

Fractional Knapsack

In this case, items can be broken into smaller pieces, hence the thief can
select fractions of items.

According to the problem statement,

 There are n items in the store

 Weight of ith item wi>0wi>0

 Profit for ith item pi>0pi>0 and

 Capacity of the Knapsack is W

In this version of Knapsack problem, items can be broken into smaller
pieces. So, the thief may take only a fraction xi of ith item.

0⩽xi⩽10⩽xi⩽1

The ith item contributes the weight xi.wixi.wi to the total weight in the

knapsack and profit xi.pixi.pi to the total profit.

Hence, the objective of this algorithm is to

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi)

subject to constraint,

∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W

It is clear that an optimal solution must fill the knapsack exactly, otherwise we
could add a fraction of one of the remaining items and increase the overall
profit.

Thus, an optimal solution can be obtained by

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W

In this context, first we need to sort those items according to the value
of piwipiwi, so that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to store
the fraction of items.
Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)

for i = 1 to n

 do x[i] = 0

weight = 0

for i = 1 to n

 if weight + w[i] ≤ W then

 x[i] = 1

 weight = weight + w[i]

 else

 x[i] = (W - weight) / w[i]

 weight = W

 break

return x

3

Analysis

If the provided items are already sorted into a decreasing order of piwipiwi,
then the whileloop takes a time in O(n); Therefore, the total time including the
sort is in O(n logn).

Example 1:

Let us consider that the capacity of the knapsack W = 60 and the list of
provided items are shown in the following table –

Item A B C D

Profit 280 100 120 120

Weight 40 10 20 24

Ratio (piwi)(piwi) 7 10 6 5

As the provided items are not sorted based on piwipiwi. After sorting, the
items are as shown in the following table.

Item B A C D

Profit 100 280 120 120

Weight 10 40 20 24

Ratio (piwi)(piwi) 10 7 6 5

Solution

After sorting all the items according to piwipiwi. First all of B is chosen as
weight of B is less than the capacity of the knapsack. Next, item A is chosen,
as the available capacity of the knapsack is greater than the weight of A.
Now, C is chosen as the next item. However, the whole item cannot be
chosen as the remaining capacity of the knapsack is less than the weight
of C.

4

Hence, fraction of C (i.e. (60 − 50)/20) is chosen.

Now, the capacity of the Knapsack is equal to the selected items. Hence, no
more item can be selected.

The total weight of the selected items is 10 + 40 + 10 = 60

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440

This is the optimal solution. We cannot gain more profit selecting any
different combination of items.

Example 2:

I = (I1,I2,I3,I4,I5)

w = (5, 10, 20, 30, 40)

v = (30, 20, 100, 90,160)

The capacity of knapsack W = 80

Solution:

ITEM wi bi

I1 5 30

I2 10 20

I3 20 100

I4 30 90

I5 40 160

5

Taking value per weight ratio i.e. pi=

ITEM wi bi
Pi=

I1 5 30 6.0

I2 10 20 2.0

I3 20 100 5.0

I4 30 90 3.0

I5 40 160 4.0

Now, arrange the value of pi in decreasing order.

ITEM wi vi
pi=

I1 5 30 6.0

I3 20 100 5.0

I5 40 160 4.0

I4 30 90 3.0

I2 10 20 2.0

The total weight of the selected items is 5 + 20+ 25 = 80

And the total profit is 30 + 100 + 160 * (25/40) = 30 + 100+100 =230

6

DAA - Job Sequencing with Deadline

Problem Statement

In job sequencing problem, the objective is to find a sequence of jobs, which
is completed within their deadlines and gives maximum profit.

Solution

7

Let us consider, a set of n given jobs which are associated with deadlines
and profit is earned, if a job is completed by its deadline. These jobs need to
be ordered in such a way that there is maximum profit.

It may happen that all of the given jobs may not be completed within their
deadlines.

Assume, deadline of ith job Ji is di and the profit received from this job is pi.
Hence, the optimal solution of this algorithm is a feasible solution with
maximum profit.

Thus, D(i)>0D(i)>0 for 1⩽i⩽n1⩽i⩽n.

Initially, these jobs are ordered according to profit,

i.e. p1⩾p2⩾p3⩾...⩾pnp1⩾p2⩾p3⩾...⩾pn.
Algorithm: Job-Sequencing-With-Deadline (D, J, n, k)

D(0) := J(0) := 0

k := 1

J(1) := 1 // means first job is selected

for i = 2 … n do

 r := k

 while D(J(r)) > D(i) and D(J(r)) ≠ r do

 r := r – 1

 if D(J(r)) ≤ D(i) and D(i) > r then

 for l = k … r + 1 by -1 do

 J(l + 1) := J(l)

 J(r + 1) := i

 k := k + 1

Analysis

In this algorithm, we are using two loops, one is within another. Hence, the

complexity of this algorithm is O(n2)O(n2).

Example 1:

The greedy algorithm described below always gives an optimal solution

to the job sequencing problem-

Step-01:

 Sort all the given jobs in decreasing order of their profit.

Step-02:

8

 Check the value of maximum deadline.

 Draw a Gantt chart where maximum time on Gantt chart is the value of

maximum deadline.

Step-03:

 Pick up the jobs one by one.

 Put the job on Gantt chart as far as possible from 0 ensuring that the job

gets completed before its deadline.

PRACTICE PROBLEM BASED ON JOB SEQUENCING WITH

DEADLINES-

Problem-

Given the jobs, their deadlines and associated profits as shown-

Jobs J1 J2 J3 J4 J5 J6

Deadlines 5 3 3 2 4 2

Profits 200 180 190 300 120 100

Answer the following questions-

1. Write the optimal schedule that gives maximum profit.

2. Are all the jobs completed in the optimal schedule?

3. What is the maximum earned profit?

Solution-

9

Step-01:

Sort all the given jobs in decreasing order of their profit-

Jobs J4 J1 J3 J2 J5 J6

Deadlines 2 5 3 3 4 2

Profits 300 200 190 180 120 100

Step-02:

Value of maximum deadline = 5.

So, draw a Gantt chart with maximum time on Gantt chart = 5 units as

shown-

Now,

 We take each job one by one in the order they appear in Step-01.

 We place the job on Gantt chart as far as possible from 0.

Step-03:

 We take job J4.

11

 Since its deadline is 2, so we place it in the first empty cell before

deadline 2 as-

Step-04:

 We take job J1.

 Since its deadline is 5, so we place it in the first empty cell before

deadline 5 as-

Step-05:

 We take job J3.

 Since its deadline is 3, so we place it in the first empty cell before

deadline 3 as-

Step-06:

 We take job J2.

 Since its deadline is 3, so we place it in the first empty cell before

deadline 3.

11

 Since the second and third cells are already filled, so we place job J2 in

the first cell as-

Step-07:

 Now, we take job J5.

 Since its deadline is 4, so we place it in the first empty cell before

deadline 4 as-

Now,

 The only job left is job J6 whose deadline is 2.

 All the slots before deadline 2 are already occupied.

 Thus, job J6 can not be completed.

Now, the given questions may be answered as-

Part-01:

The optimal schedule is-

J2 , J4 , J3 , J5 , J1

This is the required order in which the jobs must be completed in order to

obtain the maximum profit.

12

Part-02:

 All the jobs are not completed in optimal schedule.

 This is because job J6 could not be completed within its deadline.

Part-03:

Maximum earned profit

= Sum of profit of all the jobs in optimal schedule

= Profit of job J2 + Profit of job J4 + Profit of job J3 + Profit of job J5 +

Profit of job J1

= 180 + 300 + 190 + 120 + 200

Example 2:

Let us consider a set of given jobs as shown in the following table. We have
to find a sequence of jobs, which will be completed within their deadlines and
will give maximum profit. Each job is associated with a deadline and profit.

Job J1 J2 J3 J4 J5

Deadline 2 1 3 2 1

Profit 60 100 20 40 20

Solution

To solve this problem, the given jobs are sorted according to their profit in a
descending order. Hence, after sorting, the jobs are ordered as shown in the
following table.

Job J2 J1 J4 J3 J5

13

Deadline 1 2 2 3 1

Profit 100 60 40 20 20

From this set of jobs, first we select J2, as it can be completed within its
deadline and contributes maximum profit.

 Next, J1 is selected as it gives more profit compared to J4.

 In the next clock, J4 cannot be selected as its deadline is over,
hence J3 is selected as it executes within its deadline.

 The job J5 is discarded as it cannot be executed within its deadline.

Thus, the solution is the sequence of jobs (J2, J1, J3), which are being
executed within their deadline and gives maximum profit.

Total profit of this sequence is 100 + 60 + 20 = 180.

