Van't Hoff Equation

This equation gives the quantitative temperature dependence of equilibrium constant (K).

Van't Hoff Equation

This equation gives the quantitative temperature dependence of equilibrium constant (K). The relation between standard free energy change (ΔG°) and equilibrium constant is

$$\Delta G^{\circ} = -RT \ln K \tag{1}$$

We know that

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \tag{2}$$

Substituting (1) in equation (2)

$$-RTln K = \Delta H^{\circ} - T\Delta S^{\circ}$$

Rearranging

$$\ln K = \frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$
 (3)

Differentiating equation (3) with respect to temperature,

$$\frac{d\left(\ln K\right)}{dT} = \frac{\Delta H^{\circ}}{RT^{2}} \tag{4}$$

Equation 4 is known as differential form of van't Hoff equation.

On integrating the equation 4, between T_1 and T_2 with their respective equilibrium constants K_1 and K_2 .

Problem

For an equilibrium reaction $K_{\text{p}}{=}~0.0260$ at 25° C $\Delta H{=}~32.4~kJmol^{_{-1}},$ calculate K_{p} at 37° C

Solution:

$$T_1=25 + 273 = 298 \text{ K}$$

$$T_2 = 37 + 273 = 310 \text{ K}$$

$$\Delta H = 32.4 \text{ KJmol}^{-1} = 32400 \text{ Jmol}^{-1}$$

R=8.314 JK⁻¹ mol⁻¹

$$K_{\text{Pl}} = 0.0260$$

$$K_{p2} = ?$$

$$\log \frac{K_2}{K_1} = \frac{\Delta H^o}{2.303 \,R} \left[\frac{T_2 - T_1}{T_2 T_1} \right]$$

$$\log \frac{K_2}{K_1} = \frac{32400}{2.303 \times 8.314} \left(\frac{310 - 298}{310 \times 298} \right)$$

$$= \frac{32400 \times 12}{2.303 \times 8.314 \times 310 \times 298}$$
$$= 0.2198$$

$$\frac{K_2}{K_1}$$
 = anti log 0.2198 = 1.6588

$$K_2 = 1.6588 \times 0.026 = 0.0431$$