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Chapter2: Numerical Integration
2.1 Introduction to Quadrature:

We now approach the subject of numerical integration. The goal is to approximate the
definite integral of f(x) over the interval [a,b] by evaluating f(x) at a finite number of sample

points.

Definition(2.1): Suppose that a=xo<x:;<...<xm=b. A formula of the form:

QIf] = Xk=owif (x) = wof (xg) + wy f (1) + - + wy f (xa) (2.1)

With the property that:

[2 f(dx = QIf1 + EIf] 2.2)

is called a numerical integration or quadrature formula. The term E[f] is called the
truncation error for integration. The values {x,}i_, are called the quadrature nodes and

{wi JiL, are called weights.

Definition (2.2): The degree of precision of a quadrature formula is the positive integer n

such that E[P;] =0 for all polynomials Pi(x) of degree i < n, but for which E[Py+1]#0 for

some polynomial Pn+1(X) of degree n+1.

Theorem(2.1): (closed Newton-cotes Quadrature formula)

Assume that xy=xo+kh are equally spaced nodes and fi=f(xy). The first four closed

Newton-Cotes quadrature formulas are

[ fedx = 2(fo + f) (2.3)  (the trapezoidal rule)

[ol f(Odx ~ %(fo +4f1 + f2) (2.4)  (Simpson rule)

f,:iff(x)dx ~ %(fo +3fi +3f2+ f3) (2.5) (Simpson's% rule)
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[2fO0dx ~ 2 (Tfo +32f, + 12, + 32f; + 7f,)  (2.6) (Boole's rule)

Corollary(2.1): (Newton-Cotes precision)

Assume that f(x) is sufficiently differentiable; then E[f] for Newton-Cotes quadrature
involves an approximate higher derivative. The trapezoidal rule has degree of precision n=1.
If f € C?[a, b], then:

1 h h3
[ fedx =2 (fo + 1) =5 PO (2.7)
Simpson's rule has degree of precision n=3. If f € C*[a, b], then:
Xy _h h5 (4)
ol f@dx =2 (fo +4f1 + f2) = 55 (0) (2.8)
Simpson's % rule has degree of precision n=3. If f € C*[a, b], then:

[2 fGdx =2 (fy +3f, +3f + f3) — 2 FD(0) (2.9)

Boole's rule has degree of precision n=5. If f € C®[a, b], then:

f,iff(x)dx = %(Uf0 +32f; + 12f, + 32f5 + 7f,) — ST";f(@(C) (2.10)

Proof of Theorem(2.1): Start with the Lagrange polynomial Pu(x) based on Xo, X1, ... , Xm

that can be used to approximate f(x):

(x—x;)
OO = Py () = Tio f (00 [0 (=5 (211)
jrk KT
An approximate for the integral is obtained by replacing the integrand f(x) with the
polynomial Py(x). This is the general method for obtaining a Newton-Cotes integration

formula:
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[ FCodx =~ [ Py()dx = [ (Z"kiofk [, “"“”) (2.12)
J

XE—Xj
ik(k ])

The details for the general proof of the theorem are tedious. We shall give a Simpson's rule,

which is the case M=2. This case involves the approximation polynomial

Pz(x) — f() ((X—x1)(X—x2) + f]_ ((x—xo)(x—xz) + fz ((X—xo)(X—xl) (213)

Xo—x1)(xo—%2) X1=X0)(X1—X2) X2—X0)(X2—X1)

Since fy, f, and f, are constant with respect to integration, the relations in (2.12) lead to:

jf(x)dxz jfo (x — x)(x — x3) dx+ff1 (x — x0) (x — x7) dx

(X0 — x1) (X — x3) (1 — x0) (X1 — X2)

Xy — Xo) (X2 — x1)

4 j £, ((x_xo)(x_xl) dx

(2.14)

We introduce the change of variable x=xo+th with dx=hdt to assist with the evaluation
of the integrals in (2.14). The new limits of integration are from t=0 to t=2. The equal
spacing of the nodes x=xo+kh leads to xi-xj=(k-j)h and x-x=(t-k)h, which are used to
simplify (2.14), and get:

2 2

fh(t — 1h(t - 2)

i h(t — 0)R(t — 2)
f(x)dx = fq
x[ ) (—h)(—2h)

hdt + f, f hdt
0

(h)(—h)
fh(t — 0)h(t — 1)

DION

= foo Jo (62 = 3t + 2)dt + fyh [ (t2 = 20)dt + f;, 5 [ (£2 — t)dt

h(t3  3t? -2 t3  2t?\ t=2 h t3  t2 t=>»
=fo;(§—7+2t) f:o—fﬂl(g—T)li:o +f25 (G — DI
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=fo3(3) i (3) +£30
=2(fo +4fi + f2)
and the proof is complete.

Example(2.1): Consider the function f(x)=1+e™sin(4x), the equally spaced quadrature nodes

Xo =0, X1 =0.5, X, =1, x3=1.5, X4 =2 and the corresponding function values f, =1, f;=1.55152,
,=0.72159, 15=0.93765 and f,=1.13390. Apply the various quadrature formulas (2.3) through
(2.6).

The step size is h=0.5, and the computations are:

0.5

0.5
f fx)dx = 7(1 + 1.55152) = 0.63788
0

1
0.5
jf(x)dx ~ —-(1+4(1.55152) + 0.72159) = 1.32128
0

1.5
j f(x)dx = 3((;'5) (1 + 3(1.55152) + 3(0.72159) + 0.93765) = 1.64193
0
2
jf(x)dx ~ 2%5) (7(1) + 32(1.55152) + 12(0.72159) + 32(0.93765) + 7(1.1339))
0
= 2.29444

Examples (2.2): Consider the integration of the function f(x)=1+eXsin(4x) over the fixed
interval [a,b]=[0,1]. Apply the various formulas (2.3) through (2.6).

For the trapezoidal rule, h=1 and
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jf(x)dx ~ %(f(O) +f() = %(1 + 0.72159) = 0.86079
0
For Simpson's rule, h=1/2, and we get:
j 1/2 1 1
fOdx =~ =22 (F(0) + 4f (E) +F(1) = 2 (1 + 4(155152) + 0.72159) = 132128
0

For Simpson's Z rule, h=1/3, and we obtain:

3(3)

f Fedx = —22.(£(0) + 3f (%) +3f (g) e
0

= %(1 + 3(1.69642) + 3(1.23447) + 0.72159) = 1.31440

For Boole's rule, h=1/4, and the result is:

2(3)

ff(x)dx ~ a2 (7/(0) + 32f G) +12f (%) 4 32f (%) +7F(1)
0

= —(7(1) + 32(1.65534) + 12(1.55152) + 32(1.06666) + 7(0.72159))

=1.30859

The true value of the definite integral is:
1
jf(x)dx = 1.308 250 604
0

To make a fair comparison of quadrature methods, we must use the same number of
function evaluations in each method. Our final example is concerned with comparing

integration over a fixed interval [a,b] using exactly five function evaluation fi=f(xy), for
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k=0,1,...,4 for each method. When the trapezoidal rule is applied on the four subintervals

[Xo0.X1], [X1,X2], [X2,X3] and [xs,X4], it is called a composite trapezoidal rule:
X4 X1 X2 X3 X4
f f(x)dx = f f(x)dx + J f(x)dx + f f(x)dx + f f(x)dx
Xo Xo X1 X3 X3

~ 3o+ )+ + ) +5(h+ )+ 505 + )

=3 (o + 2fi + 25 + 23 + f2) (2.15)

Simpson's rule can also be used in this manner. When Simpson's rule is applied on the two

subintervals [xo,X2] and [x2,X4], it is called a composite Simpson's rule:
X4 Xy X4

f f(x)dx = f f(x)dx + J f(x)dx

Xo Xo X2

~2(fo + 4L+ L) +3(HH A+ )

zg(f0+4f1+2f2+4f3 + fa) (2.16)

Example(2.3): Consider the integration of the function f(x)=1+e™*sin(4x) over [a,b]=[0,1].

Use exactly five function evaluations and compare the results from the composite trapezoidal

rule and composite Simpson's rule.

The uniform step size is h=1/4. The composite trapezoidal rule (2.15) produces:

i 42(50 421 ()21 Q) 120 () 1)

0

= 2 (1 +2(1.65534) + 2(1.55152) + 2(1.06666) + 0.72159)

=1.28358



DR. Muna M. Mustafa | 16
Chapter2:Numerical Integration

Using the composite Simpson's rule (2.16), we get:
1
1/4 1 1 3
[ rodx ==L (r) + 47 (5) + 27 (5) + 47 (5) + 7 0)
0
= % (1+ 4(1.65534) + 2(1.55152) + 4(1.06666) + 0.72159)

=1.30938

Example(2.4): Determine the degree of precision of Simpson's % rule.

It will suffice to apply Simpson's % rule over the interval [0,3] with the five test functions

f(x)=1, x, x?, x3, and x*. For the first four functions. Simpson's g rule is exact.

3
jldx=%(1+3(1)+3(1)+1)=3
0

jxdx=%(0+3(1)+3(2)+3)=;
0

[ x?dx = 2(0 + 3(1) + 3(4) +9) =9
3
3 81
jx3dx = §(O +3(1) +3(8) + 27) = =
0
the function f(x)=x* is the lowest power of x for which the rule is not exact.
3
3 99
jx“dx = §(O +3(1) + 3(16) + 81) = -
0

Therefore, the degree of precision of Simpson'sg rule is n=3.
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Exercises:

1. Consider a general interval [a,b]. Show that Simpson's rule produces exact results for
the function f(x)=x2 and f(x)=x3, that is

3 3 b b4 4
af de— -= b.fax3dx=:—a—

3 4
2. Integrate the Lagrange interpolation polynomial
(x —x;) (x = Xo)
+tho——=
(%o — x1) (%1 = Xo)

over the interval [Xo,x1] and establish the trapezoidal rule.

Pi(x) = for—s

3. Determine the degree of precision of the trapezoidal rule.

2.2 Other Ways to Derive Integration Formulas Using Newton
Forward Polynomial:

During the integration we will need to change the variable of integration from x to t

since our polynomials are expressed in terms of t. Observe that dx=hdt.

1

~
I

[ rooax=n [ o+ eapy+ G200, SR w4
= h ) [fo + enfy + 002y + NS 4 e

= n[foe + S0+ (- D)0+ (G- 5+ D)8+
= h[fo+iaf - La2f 4 a3fy 4]

using first two terms only, we get:

f FGdx = hlfo+ 500 = h[fo + 3 h — )] = 5 Vo +
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Exercise:

Derive Simpson's formula using Newton Forward polynomial.
2.3 Composite Trapezoidal and Simpson's Rule:

Theorem(2.2): (Composite Trapezoidal Rule)

Suppose that the interval [a,b] is subdivided into subinterval [Xk, Xk+1] of width h=(b-
a)/M by using equally spaced nodes x=a+tkh, for k=0,1,...,M. The composite trapezoidal

rule for M subintervals can be expressed in:
[P fQdx =~ T(F,h) =S [fo + 2(fs + -+ + fu-1) + fir]

=2[f(@) + f(B)] + A XM= £ (xi0) (2.17)

Proof: Apply the trapezoidal rule over each subinterval [X«.1, Xk]. Use the additive property

of the integral for subintervals:

fb fFG)dx = ff(x)dx + jzf(x)dx ot }Mf (x)dx

XM—-1

=2 Uo + Al +5 1+ £l o4 5 s + fiud

- g[fo +2(fi + fo + ot fu-1) + ful

Example(2.5): Consider f(x) = 2 + sin (2+/x). Use the composite trapezoidal rule with 11

sample points to compute an approximation to the integral of f(x) taken over [1,6].

To generate 11 sample points, we use M=10 and h=(6-1)/10=1/2.

X 1 1.5 2 2.5 3 3.5 4 45 5 55 6

f(x) 2.909297 | 2.638157 | 2.308071 | 1.979316 | 1.683052 | 1.4353041 | 1.243197 | 1.108317 | 1.028722 | 1.000241 | 1.017357
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[{ fG@dx = Z[f() + 2(F(1.5) + f(2) + f(2.5) + f(3) + f(3.5) + f(4) + f(4.5) +

2
f(5) + £(5.5)) + (6)]=8.193854.

Theorem(2.3): (Composite Simpson Rule)

Suppose that [a,b] is subdivided into 2M subintervals [Xk, Xk+1] of equal width with
h=(b-a)/(2M) by using xx=atkh for k=0,1,...,2M. The composite Simpson rule for 2M
subintervals can be expressed in:

b
h
jf(x)dx ~S(f,h) = §[f0 +4f1 +2f, +4fs+ -+ 2fom—2 + 4fom-1 T+ fou]
h 2h <M—1 4h M
= (@) + F(D)] + 5 k=1 f(xan) + 5 Zie=1 f (2x-1)  (2.18)

proof: (EXC)

Example(2.6): Consider f(x) = 2 + sin (2v/x). Use the composite Simpson rule with 11

sample points to compute an approximation to the integral of f(x) taken over [1,6].

[} feodx = Z2IF(1) + F(O)] +35[f (2 + F3) + F(4) + F(5)] + 2 [F(1.5) + £(2.5) +
£(3.5) + f(4.5) + f(5.5)]=8.1830155

Error Analysis:

Corollary(2.2): (Trapezoidal Rule: Error Analysis)

Suppose that [a,b] is subdivided into M subintervals [Xk, Xk+1] of width h=(b-a)/M.
The composite trapezoidal rule:

T(f,h) = 2[f(@) + F(B)] + R XY= £ () (2.19)

IS an approximation to the integral:

2 f)dx = T(f, h) + Ex(f, b) (2.20)
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Furthermore, if f € C?[a, b], there exists a value ¢ with a<c<b so that the error term E+(f,h)

has the form:

—(b— (2) 2
Er(f,h) = ==L O = o(n2) (2.21)

Proof: We first determine the error term when the rule is applied over [Xo, X1]. Integrating the

Lagrange polynomial P1(x) and its remainder yields:

2
[ Gy = [ Py (x)dx + [ SR L) gy (2.22)

The term (x-Xo)(X-X1) does not change sign on [Xo, X1], and f@(c(x)) is continuous. Hence the

second Mean value Theorem for integrals implies that there exists a value c; so that:

[ F@dx =2 [fo + fil + fP(er) [ E0 0 dx (2.23)

Use the change of variable x=xo+ht in the integral on the right side of (2.23)

[ feodx = 21fo + il +4 (2)2“1) [} h(t = 0)h(t — Dhdt
= 2fo + A1+ 29 12— pyae
[fo + fil - M (2.24)

Now we are ready to add up the error terms for all of the intervals [Xk, Xk+1]:

[ FGdx = She, [ F@)dx = By 21 (ey) + (0] — = Sh, £ (e (2.25)

The first sum is the composite trapezoidal rule T(f,h). In the second term, one factor of h is

replaced with its equivalent h=(b-a)/M, and the result is:

b M
b — a)h?
| reoax =T - %( > f<2><ck)>

k=1

20
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The term in parentheses can be recognized as an average of values for the second derivative

and hence is replaced by f@(c). Therefore, we have established that:

(b-a)fP(c)h?
12

2 f()dx = T(f, b) -
and the proof is complete.

Corollary(2.3): (Simpson's rule: Error analysis)

Suppose that [a,b] is subdivided into 2M subintervals [Xk, Xk+1] of equal width h=(b-
a)/(2M). The composite Simpson rule

S(f,h) =2 (F(@) + F () + 2 BME £ (i) + 5 Bhs f (Xars) (2.26)
IS an approximation to the integral:
[2 f()dx = S(f, h) + Es(f, h) (2.27)

Furthermore, if f € C*[a, b], there exists a value ¢ with a<c<b so that the error term Es(f,h)

has the form:

—(h— (4)
Eg(f, h) = “&=L O _ g(pt) (2.28)

180

Example(2.7): Consider f(x) = i Investigate the error when the composite trapezoidal rule

Is used over [1,6] and the number of subintervals is 10.
h=(6-1)/10=0.5, since:

~(b — )f P (OR?
12

ET(f' h) = = O(hz)

we first compute f'(x) = ;—21 and f"'(x) = %,therefore:

ff)=2,f"@2) = %,f”(6) = é = 0.009 259
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—(6— 2 —
and hence f'(c)=2 and Ex(f h)=—"—2 2 = 225 = _( 208 333

Example(2.8): Find the number M and the step size h so that the error Es(f,h) for the

Simpson's rule is less than 5 x 109 for the approximation f27 dx/ . ~ S(f,h).

1 yield —1 yieta 2 yield —6 yield 24
F) =5 00 = S TS ) = o fO) = 25 f ) =

the maximum value of [f)(x)| taken over [2,7] occurs at the end point x=2 and f®(2)=3/4,
then:

3
|- -af®@nt|  T-2)zh"  p
IEs(f, ] = 180 =""1g0 48

The step size h and number M satisfy the relation h=5/(2M), and this is used in the above

equation to get the relation

< < -9
|Es(f,h)| < oo < 5 X 10

yields 125 yields
—>%x 10° < M*——11295< M

since M must be integer, we chose M=113
and the corresponding step size h=5/226=0.022123

Exercises:

dx
1+x2

1. Approximate the integral f_11 using the composite trapezoidal rule with M=10.

2. The length of the curve y=f(x) over the interval a < x < b is szf,/l + (f'(x)?

approximate the length of the function f(x)=x3 over [0,1] using composite Simpsons
rule with M=5.
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3. Verify that the trapezoidal rule (M=1, h=1) is exact for polynomials of degree<1 of
the form f(x)=cix+co over [0,1].

4. Determine the number M and the interval width h so that the composite trapezoidal
rule for M subintervals can be used to compute the integral f02 xe *dx with an

accuracy of 5x 1077 .
2.4 Romberg Integration:

The discussion here is based upon the trapezium rule. Let the integration domain [a,b]
be divided by three equispaced nodes xo=a, X1=(a+b)/2 and x,=b at interval of size h. Two
successive trapezium estimates using one and two subintervals respectively are:

2h h
T, = B3 [f (xo) + f(x1)] and T, = 2 [f (o) + 2f (x1) + f(xz)]

On including the truncation error for this estimate we can write:

(2h)*

f=h-

f"(x0) — G2hY* — -~

h2
I'=T, _Ef”(xo) — Gh* — -

where G is independent of the step size h. Four times the second estimate minus the first

estimate gives:

I =

w R

[4T, — T;] + 4Gh* + 0(h®) (2.29)
Taken as an estimate to |, the values (4T,-T;)/3 has leading error of O(h*). Expand this
estimate:

[ 51T, - T = 5 [45 (a4 2+ )}~ 5 (ot o)
~3 2 1 _3 ) 0 1 2 2 0 2
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h
= §[f0 +4f1 + f2]
Shows it to be the Simpson estimate S, using two sub-intervals of size h=(b-a)/2.

This process can be carried out for any two trapezium estimates Ty and Ty to give the
more accuracy Simpson's estimate Say.

Trapezoidal Simpson

T1

T2 S2

Ta Sa In general Son=1/3{4T2n-Tn}
Ts Ss

In the same way we get:
[ ~ % [16S, — S,] + O(Rh®) (2.30)

known as Boole's rule.

Trapezoidal Simpson Boole's

T1

T2 S2

Ta S4 B4 In general Son=1/3{4T2n-Tn}
Ts Ss Bs In general Ban=1/15{16S4n-S2n}

Example(2.9): Estimate the value of fol eS™™* dx using Romberg integration

N Trapezium Simpson Boole
k=1 k=2 k=3 k=4
1 1.659 888
2 1.637 517 1.630 060
4 1.633 211 1.631 776 1.631 891
8 1.632 201 1.631 864 1.631 869 1.631 869
Exercises:

1. Use Romberg integration to estimate fOsze_xzdx as accurately as possible, working

to four decimal places.




