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Chapter3: Numerical Solution of Ordinary Differential 

Equations 
3.1 Numerical Solution of a First-Order ODE 

A numerical solution of a first order ODE formulated as  
  

  
  (   )                             (  )             (3.1) 

is a set of discrete points that approximate the function y(x). When a differential equation is 

solved numerically, the problem statement also includes the domain of the solution. For 

example, a solution is required for values of the independent variable from x = a to x = b (the 

domain is [a, b]). Depending on the numerical method used to solve the equation, the number 

of points between a and b at which the solution is obtained can be set in advance, or it can be 

decided by the method. For example, the domain can be divided into N subintervals of equal 

width defined by N + 1 values of the independent variable from x1 = a to       . The 

solution consists of values of the dependent variable that are determined at each value of the 

independent variable. The solution then is a set of points (x1, y1), (x2, y2), ... , (xN +1 , YN + 1 ) 

that define the function y( x) . 

3.1.1 Overview of Numerical Methods Used/or Solving a First-Order ODE 
Numerical solution is a procedure for calculating an estimate of the exact solution at a 

set of discrete points. The solution process is incremental, which means that it is determined 

in steps. It starts at the point where the initial value is given. Then, using the known solution 

at the first point, a solution is determined at a second nearby point. This is followed by a 

solution at a third point, and so on.  

There are procedures with a single-step and multistep approach. In a single-step 

approach, the solution at the next point,     , is calculated from the already known solution 

at the present point,   . In a multi-step approach, the solution at      is calculated from the 

known solutions at several previous points. The idea is that the value of the function at 

several previous points can give a better estimate for the trend of the solution.  

Also, two types of methods, explicit, and implicit, can be used for calculating the 

solution at each step. The difference between the methods is in the way that the solution is 

calculated at each step. Calculating the value of the dependent variable at the next value of 

the independent variable. In an explicit formula, the right-hand side of the equation only has 

known quantities. In other words, the next unknown value of the dependent variable,     , is 

calculated by evaluating an expression of the form: 

      (          )              (3.2) 

where   ,   , and      are all known quantities. In implicit methods, the equation used for 

calculating     from the known   ,   , and      has the form: 

      (            )         (3.3) 

Here, the unknown      appears on both sides of the equation.  
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3.1.2 Errors in Numerical Solution of ODEs 
Two types of errors, round-off errors and truncation errors, occur when ODEs are 

solved numerically. Round-off errors are due to the way that computers carry out 

calculations. Truncation errors are due to the approximate nature of the method used to 

calculate the solution. Since the numerical solution of a differential equation is calculated in 

increments (steps), the truncation error at each step of the solution consists of two parts. One, 

called local truncation error, is due to the application of the numerical method in a single 

step. The second part, called propagated, or accumulated, truncation error, is due to the 

accumulation of local truncation errors from previous steps. Together, the two parts are the 

global (total) truncation error in the solution. 

3.1.3 Single-step explicit methods 
In a single-step explicit method, illustrated in Fig. 3-1, 

 
Figure 3-1: Single-step explicit methods. 

The approximate numerical solution (    ,     ) is calculated from the known solution at 

point (  ,   ) by: 

                                     (3.4) 

    =      +Slope·h                           (3.5) 

where h is the step size, and the Slope is a constant that estimates the value of 
  

  
 in the 

interval from   to     . The numerical solution starts at the point where the initial value is 

known. This corresponds to i = 1 and point (x1, y1). Then i is increased to i = 2, and the 

solution at the next point, (x2, y2), is calculated by using Eqs. (3.4) and (3.5). The procedure 

continues with i = 3 and so on until the points cover the whole domain of the solution. 

3.2 EULER'S METHODS 
Euler's method is the simplest technique for solving a first-order ODE 

of the form of Eq. (3.1): 
  

  
  (   )                             (  )     

The method can be formulated as an explicit or an implicit method.  
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3.2.1 Euler's Explicit Method 
Euler's explicit method (also called the forward Euler method) is a single-step, 

numerical technique for solving a first-order ODE. The method uses Eqs. (3.4) and (3.5), 

where the value of the constant Slope in Eq. (3.5) is the slope of y(x) at point (  ,   ). This 

slope is actually calculated from the differential equation: 

      
  

  
       (     )           (3.6) 

Euler's method assumes that for a short distance h near (     ), the function y(x) has a 

constant slope equal to the slope at (     ). With this assumption, the next point of the 

numerical solution (         ) is calculated by: 

                                     (3.7) 

    =    + (     )                         (3.8) 

Equation (3.8) of Euler's method can be derived in several ways. Starting with the given 

differential equation: 
  

  
  (   )                      (3.9) 

An approximate solution of Eq. (3.9) can be obtained either by numerically integrating the 

equation or by using a finite difference approximation for the derivative. 

3.2.1.1 Deriving Euler's method by using finite difference approximation for the 

derivative 

Euler's formula, Eq. (3.8), can be derived by using an approximation for the derivative 

in the differential equation. The derivative 
  

  
 in Eq. (3.8) can be approximated with the 

forward difference formula by evaluating the ODE at the point x = xi: 
  

  
      

       

       
  (     )            (3.10) 

Solving Eq. (3.10) for      gives Eq. (3.8) of Euler's method. (Because the equation can be 

derived in this way, the method is also known as the forward Euler method.) 

Example 3-1: Use Euler's explicit method to solve the ODE  
  

  
               

from x = 0 to x = 2.5 with the initial condition y = 3 at x = 0. 

(a) Solve by hand using h = 0.5. 

( b) Write a MATLAB program in a script file that solves the equation using h = 0.5. 

(c) Use the program from part (b) to solve the equation using h = 0.1. 

In each part compare the results with the exact (analytical) solution: 

 ( )  
  

 
       

  

 
       

Solution: 

(a) Solution by hand: The first point of the solution is (0, 3), which is the point where the 

initial condition is given. For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

The rest of the solution is determined by using Eqs. (3.7) and (3.8). In the present problem 

these equations have the form: 
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                                                                 (3.11) 

    =    + (     )      (         
      )        (3.12)       

Equations (3.11) and (3.12) are applied five times with i = 1, 2, 3, 4, and 5. 

First step: For the first step i = 1. Equations (3.11) and (3.12) give:  

                  

       (         
      )        

The second point is (0.5, 4.7). 

Second step: For the second step i = 2. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The third point is (1, 4.8924779). 

Third step: For the third step i = 3. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The fourth point is (1.5,          ). 

Fourth step: For the fourth step i = 4. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The fifth point is (2,          ). 

Fifth step: For the fourth step i = 5. Equations (3.11) and (3.12) give:  

                  

       (         
      )              

The sixth point is (2.5,          ). 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 4.7000000 4.0722953 0.6277047 

3 1.0000 4.8924779 4.3228804 0.5695975 

4 1.5000 4.5498549 4.1695687 0.3802862 

5 2.0000 4.0516405 3.8351047 0.2165358 

6 2.5000 3.5414969 3.4360905 0.1054064 

(b) To solve the ODE with MATLAB: 
function d=euler(f,y1,a,b,n) 

h=(b-a)/n;x(1)=a;y(1)=y1; 

for k=1:n 

    x(k+1)=x(k)+h; 

    y(k+1)=y(k)+h*f(x(k),y(k)); 

end 

d=[x' y'] 
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3.2.2 Analysis of Truncation Error in Euler's Explicit Method 
As mentioned in Section 3.1.2, when ODEs are solved numerically there are two 

sources of error, round-off and truncation. The round-off errors are due to the way that 

computers carry out calculations. The truncation error is due to the approximate nature of the 

method used for calculating the solution in each increment (step). In addition, since the 

numerical solution of a differential equation is calculated in increments (steps), the truncation 

error consists of a local truncation error and propagated truncation error. The truncation 

errors in Euler's explicit method are discussed in this section. 

The discussion is divided into two parts. First, the local truncation error is analyzed, 

and then the results are used for determining an estimate of the global truncation error. 

Definition 3.1: Assume that {(xk,yk),k=1,…,N} is the set of discrete approximations and that 

y=y(x) is the unique solution to the initial value problem. The global discretization error ek 

is defined by: 

  ek=y(xk)-yk   for k=1,…,N                                                                   (3.13) 

The local discretization error  k+1 is defined by: 

                      k+1=y(xk+1)-yk-h (xk,yk)     for k=1,…,N-1                                           (3.14) 

for some function   called an increment function. 

Theorem 3.1: (Precision of Euler's Method) 

Assume that y(x) is the solution to the IVP given in (3.1).If y(x) C
2
[t0,b] and 

{(xk,yk),k=1,…,N} is the sequence of approximations generated by Euler's method, then: 

 |ek|=|y(xk)-yk|=O(h)                                                                              (3.15) 

 | k+1|=|y(xk+1)-yk-hf(xk,yk)|=O(h
2
)                                                            (3.16)         

The error at the end of the interval is called the final global error (FGE): 

  E(y(b),h)=|y(b)-yM|=O(h)                                                                    (3.17) 

3.2.3 Euler's Implicit Method 
The form of Euler's implicit method is the same as the explicit scheme, except, for a 

short distance, h, near (     ) the slope of the function y(x) is taken to be a constant equal to 

the slope at the endpoint of the interval  (         ). With this assumption, the next point of 

the numerical solution (         ) is calculated by: 

                                        (3.18) 

    =    + (         )                         (3.19) 
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Now, the unknown      appears on both sides of Eq. (3.19), and unless  (         )depends 

on      in a simple linear or quadratic form, it is not easy or even possible to solve the 

equation for      explicitly. 

3.3 MODIFIED EULER'S METHOD 
The modified Euler method is a single-step, explicit, numerical technique for solving a 

first-order ODE. The method is a modification of Euler's explicit method. (This method is 

sometimes called Heun's method). As discussed in Section 3.2.1, the main assumption in 

Euler's explicit method is that in each subinterval (step) the derivative (slope) between points 
(     ) and (         )is constant and equal to the derivative (slope) of y(x) at point (     ). 
This assumption is the main source of error. In the modified Euler method the slope used for 

calculating the value of      is modified to include the effect that the slope changes within 

the subinterval. The slope used in the modified Euler method is the average of the slope at 

the beginning of the interval and an estimate of the slope at the end of the interval. The slope 

at the beginning is given by: 
  

  
       (     )              (3.20) 

The estimate of the slope at the end of the interval is determined by first calculating an 

approximate value for      written as     
  using Euler's explicit method: 

    
       (     )          (3.21) 

and then estimating the slope at the end of the interval by substituting the point (         
  ) 

in the equation for 
  

  
 : 

  

  
       
      

  

  (         
  )        (3.22) 

The modified Euler method is summarized in the following algorithm. 

Algorithm for the modified Euler method 

1. Given a solution at point (     ), calculate the next value of the independent variable: 

          

2. Calculate (     ). 
3. Estimate      using Euler's method: 

    
       (     ) 

4. Calculate (         
  ) . 

5. Calculate the numerical solution at       : 

        
 

 
[ (     )   (         

  )] 

Example 10-2:Use the modified Euler method to solve the ODE 

 
  

  
               

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution: 
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 ( )  
  

 
       

  

 
      . 

Solution: 

The first point of the solution is (0, 3), which is the point where the initial condition is given. 

For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

 In the present problem these equations have the form: 

                                                                  

    
  =    + (     )      (         

      )      

        
 

 
[ (     )   (         

  )]     
   

 
[(         

      )  

(        
             )]      

      

First step: For the first step i = 1: 

                  

  
       (         

      )        

   
   

 
[(         

      )  (      
           )]                    

The second point is (0.5, 3.946238958743852). 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 3.946238958743852 4.0722953 0.126056374335137 

3 1.0000 4.187746065761980 4.3228804 0.135134415959749 

4 1.5000 4.063314737957255 4.1695687 0.106253975375624 

5 2.0000 3.763482617314995 3.8351047 0.071622108811351 

6 2.5000 3.393629530605291 3.4360905 0.042460997400584 

Comparing the error values here with those in Example 3-1, where the problem was solved 

with Euler's explicit method using the same size subintervals, shows that the error with the 

modified Euler method is much smaller. 

3.4 RUNGE-KUTTA METHODS 
Runge-Kutta methods are a family of single-step, explicit, numerical techniques for 

solving a first-order ODE. As was stated in Section 3.1, for a subinterval (step) defined by 
[       ], where h =     -  , the value of     is calculated by: 

                       (3.23) 

where Slope is a constant. The value of Slope in Eq. (3.23) is obtained by considering the 

slope at several points within the subinterval. Various types of Runge-Kutta methods are 

classified according to their order. The order identifies the number of points within the  sub 

interval that are used for determining the value of Slope in Eq. (3.23). Second order Runge-

Kutta methods use the slope at two points, third-order methods use three points, and so on. 

The so-called classical Runge-Kutta method is of fourth order and uses four points. The order 

of the method is also related to the global truncation error of each method. For example, the 



DR. Muna M. Mustafa 
Chapter3: Numerical Solution of Ordinary Differential Equations 

32 

 

second-order Runge-Kutta method is second-order accurate globally; that is, it has a local 

truncation error of O(h
3
) and a global truncation error of O(h

2
). 

3.4.1 Second-Order Runge-Kutta Methods 
The general form of second-order Runge-Kutta methods is: 

        
 

 
(     )

    (     )

    (           )

}                      (3.24) 

Example 3-3: Solving by hand a first-order ODE using the second-order Runge-Kutta 

method to solve the ODE 
  

  
               

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution: 

  

 ( )  
  

 
       

  

 
      . 

Solution: 

The first point of the solution is (0, 3), which is the point where the initial condition is given. 

For the first point i = 1. The values of x and y are x1 = 0 and y1 = 3. 

The rest of the solution is done by steps. In each step the next value of the independent 

variable is given by: 

                                    (3.25) 

The value of the dependent variable      is calculated by first calculating k1 and k2 using : 

    (     )                    
    (           )

}                   (3.26) 

and then substituting the k’s in : 

        
 

 
(     )                      (3.27) 

First step: In the first step i = 1. Equations (3. 25)-(3. 27) give: 

               

    (     )= (   )      ( )    
    ( )      

    (           )=  (           (   ))   (       ) 

                          (   )        (   )                    

      
 

 
(     ) =  

   

 
(                     )                    

Second step: In the first step i = 2. Equations (3. 25)-(3. 27) give: 

               

    (     )= (                     ) 

                   (                 )        (   )                    

    (           )  

      =  (                                           (   )) 
       =-0.323440656410266 
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(     ) =4.187746065761980 

Third step: 

k1 = 0.160432265857648 

k2 = -0.658157577076552 

   4.063314737957255 

Fourth step: 

k1 = -0.412580624196292 

k2 = -0.786747858372744 

    3.763482617314995 

Fifth step: 

k1 = -0.674497688119808 

k2 = -0.804914658719007 

    3.393629530605291 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.0000000 3.0000000 0 

2 0.5000 3.946238958743852 4.0722953 0.126056374335137 

3 1.0000 4.187746065761980 4.3228804 0.135134415959749 

4 1.5000 4.063314737957255 4.1695687 0.106253975375624 

5 2.0000 3.763482617314995 3.8351047 0.071622108811351 

6 2.5000 3.393629530605291 3.4360905 0.042460997400584 

The solution obtained is obviously identical (except for rounding errors) to the solution in 

example 3-2. 

3.4.2 Fourth-Order Runge-Kutta Methods 
The general form of classical fourth-order Runge-Kutta method is: 

        
 

 
(             )

                                                                
    (     )                       

    (   
 

 
    

   

 
)

    (   
 

 
    

   

 
)

    (           ) }
 
 
 

 
 
 

                    (3.28) 

Example 3-4: Solving by hand a first-order ODE using the fourth-order Runge-Kutta 

method to solve the ODE 
  

  
               

 from x=0 to x = 2.5 with the initial condition y(0) = 3. Using h = 0.5. Compare the results 

with the exact (analytical) solution:  
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 ( )  
  

 
       

  

 
      . 

Solution: 

First step: 
    (     )   (   )  3.40 

    (   
 

 
    

   

 
)  1.874204404299870 

    (   
 

 
    

   

 
)  2.331943083009909 

    (           )   1.025789985169459 

      
 

 
(             )  4.069840413315752 

Second step: 
k1 = 1.141147338996503 

k2 = 0.363460833637786 

k3 = 0.596766785245403 

k4 = -0.056141022354118 

   4.320295542849815 

Third step: 
k1 =0.001372893352247 

k2 =-0.373741567888647 

k3 =-0.261207229516379 

k4 = -0.564233252357536 

   4.167565713365203 

Fourth step: 
k1 = -0.537681794685830 

k2 =-0.698886767064788 

k3 =-0.650525275351102 

k4 =-0.769082238169397 

   3.833766703557953 

Fifth step: 
k1 =-0.758838591611358 

k2 =-0.808773522533291 

k3 =-0.793793043256712 

k4 =-0.817678349128413 

   3.435295864197971 

The values of the exact and numerical solutions, and the error, which is the difference 

between the two, are: 
i        numerical y(  ) exact Error 

1 0 3.000000000000000 3.0000000 0 

2 0.5000    4.069840413315752 4.0722953 0.002454919763237 

3 1.0000    4.320295542849815 4.3228804   0.002584938871915 

4 1.5000    4.167565713365203 4.1695687   0.002002999967676 

5 2.0000    3.833766703557953 3.8351047   0.001338022568394 

6 2.5000    3.435295864197971 3.4360905   0.000794663807904 
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3.5 Predictor-Corrector Methods 
Predictor-corrector methods refer to a family of schemes for solving ordinary 

differential equations using two formulae: predictor and corrector formula. In predictor-

corrector methods, four prior values are required to find the value of y at xn. Predictor-

corrector methods have the advantage of giving an estimate of error from successive 

approximations to yn. The predictor is an explicit formula and is used first to determine an 

estimate of the solution yn +1. The value yn +1 is calculated from the known solution at the 

previous point (xn, yn) using single-step method or several previous points (multi-step 

methods). If xn and xn +1 are two consecutive mesh points such that : 

xi +1 = xi + h 

 then in Euler’s method, we have: 

yi +1 = yi + h f (xi, yi), i = 0, 1, 2, 3, …               (3.29) 

Once an estimate of yi+1 is found, the corrector is applied. The corrector uses the estimated 

value of yi+1 on the right-hand side of an otherwise implicit formula for computing a new, 

more accurate value for yn+1 on the left-hand side. The modified Euler’s method gives as: 

        
 

 
[ (     )   (         )]                          (3.30) 

The value of yi +1 is first estimated by Eq.(3.29) and then utilized in the right-hand side of 

Eq.(3.30) resulting in a better approximation of yi+1. The value of yi +1 thus obtained is again 

substituted in Eq.(3.30) to find a still better approximation of yi+1. This procedure is repeated 

until two consecutive iterated values of yi+1 are very close. Here, the corrector equation (3.30) 

which is an implicit equation is being used in an explicit manner since no solution of a non-

linear equation is required. 

In addition, the application of corrector can be repeated several times such that the 

new value of yi+1 is substituted back on the right-hand side of the corrector formula to obtain 

a more refined value for yi+1. The technique of refining an initially crude estimate of yi+1 by 

means of a more accurate formula is known as predictor-corrector method. Equation (2.29) 

is called the predictor and Eq. (3.30) is called the corrector of yn +1.  

Example 3.5:Use the  PC method on (2, 3) with h = 0.1 for the initial value problem 

 

 
Solution: 

 

First, we use Euler method: 

        (     )=1+0.1(-2(1)
2
)=0.8 

Then, we use modified Euler: 

      
 

 
[ (     )   (     )]=1+0.1/2*[-2*1

2
+(-2.1)*(0.8)

2
]=0.8328  

Containing in the same manner, we obtain: 
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xi yi Y(xi) 

2 00111111111111111 00111111111111111 

2.1    10:00:11111111111     10:0;:9550:8900;;  

2.2    1091:108:9:880:::     10918005050000898  

2.3    10800:100:099::08     10819;10905580001  

2.4    105055;098;090885     10500;08:;0809100  

2.5    10890;0:189888509     108915::0050;800:  

2.6    108000910:055:800     1080108:189008:;0  

2.7    100:1980;005589:0     1009:190:0088:0;0  

2.8    10088:05905;0;190     1008088595080885:  

2.9    10008008950809:;5     100001008:18;;001  

3.0    100:95:0058510;15     100:59080:59080:8  

 

Example 3.6: Approximate the y value at x = 0.4 of the following differential equation: 

 

using the PC method with h=0.1. 

Solution: 

xi yi 

0 00111111111111111 

0.1 00150051111111111 

0.2 00015008580511111 

0.3 000809880;::0:005 

0.4 0000001890;080188 

 

3.6 Higher-Order Differential Equations: 

 Higher-order differential equations involve the higher derivatives x''(t), x'''(t), and so 

on. They arise in mathematical models for problems in physics and engineering. By solving 

for the second derivative, we can write a second-order initial value problem in the form: 

  x''(t)=f(t,x(t),x'(t)) with  x(t0)=x0 and x'(t0)=y0                                 (3.31) 

The second-order differential equation can be reformulated as a system of two first-order 

equations if we use the substitution: 

                     x'(t)=y(t)                                                                      (3.32) 

Then  x''(t)=y'(t) and the differential equation in (3.31) becomes a system: 
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  (     )                       {

 (  )    
 (  )    

                                                   (3.33) 

 A numerical procedure such as Rung-Kutta method can be used to solve (3.33) and 

will generate two sequences {xk} and {yk}. The first sequence is the numerical solution to 

(3.31). 

Now, consider RK2 for the system of two differential equation : 

 x'(t)=f(t,x,y) 

 y'(t)=g(t,x,y) 

as follows: 

 xk+1=xk+1/2(k1+k2) , yk+1=yk+1/2(p1+p2) 

where  k1=hf(tk,xk,yk), p1=hg(tk,xk,yk) 

and  k2=hf(tk+h,xk+k1,yk+p1), p2=hg(tk+h,xk+k1,yk+p1). 

Example 3.7: Consider the second-order IVP 

  x''(t)+4x'(t)+5x(t)=0     with x(0)=3 and x'(0)=-5 

(a) Write down the equivalent system of two first-order equation. 

(b) Use The  RK2 method to solve the reformulated problem over [0,1] using  M=5. 

(c) Compare the numerical solution with the true solution x(t)=3e
-2t

cos(t)+e
-2t

sin(t). 

First assume x'(t)=y(t) then x''(t)=y'(t) and we have: 

 x'(t)=y(t) 

 y'(t)=-4y(t)-5x(t)   with x(0)=3 and y(0)=-5, then h=(1-0)/5=0.2 

tk xk x(tk) 

0 3 3 

0.2   

0.4   

0.6   

0.8   

1   
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Exercises: 

 Solve the system x'=3x-y, y'=4x-y with x(0)=0.2 and y(0)=0.5 using RK2 with h=0.5 in 

[0,1]. 

3.7 Boundary Value Problems: 

 Another type of differential equation has the form: 

  x''=f(t,x,x')   for a t b                                                                    (3.34) 

with the boundary conditions 

  x(a)=   and x(b)=                                                                           (3.35) 

This is called a boundary value problem (BVP). 

Finite-difference Method: 

 Methods involving difference quotient approximations for derivatives can be used for 

solving second-order BVP. Consider the linear equation: 

  x''=p(t)x'(t)+q(t)x(t)+r(t)                                                                (3.36) 

over [a,b] with x(a)=   and x(b)=  . Form a partition of [a,b] using the points 

a=t0<t1<…<tN=b, where h=(b-a)/N and tj=a+jh for j=0,1,…N. The central-difference 

formulas discussed in chapter two are used to approximate the derivatives: 

    (  )  
 (    )  (    )

  
  (  )                                                        (3.37) 

                           (  )  
 (    )   (  )  (    )

  
  (  )                                         (3.38) 

To start derivation, we replace each term x(tj) on the right side of (3.37) and (3.38) with xj 

and the resulting equations are substituted into (3.36), to obtain the relation: 

                       
             

  
   (

         

  
)                                              (3.39) 

which is used to compute numerical approximation to the differential equation(3.36). This is 

carried out by multiplying each side of (3.39) by h
2
 and then collecting terms involving xj-1, 

xj and xj+1 and arranging them in a system of linear equations: 
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            (
  

 
    )      (   

   )   (
 

 
    )       

                (3.40) 

for j=1,2,…,N-1, where              .  

Example 3.8  Solve the boundary value problem 

                                 ( )  
  

    
  ( )  

 

    
 ( )    

with x(0)=1.25 and x(4)=-0.95 over the interval [0,4] with h=1. 

since h=1 we get N=4 and t0=0, t1=1, t2=2, t3=3 and t4=4 

In the same way: 

             
  

 
   

    
 (
         

  
)  

 

    
      

then, we get: 

                        ( 
 

 

   

    
   )     (  

   

    
 )    (

 

 

   

    
   )       

  

                        ( 
   

    
   )     (  

   

    
 )    (

   

    
   )       

  

for j=1,2,3 and x0=1.25, x4=-0.95 

so for j=1, we get 

                       ( 
   

    
   )   (  

   

    
 )    (

   

    
   )     

  

 

for j=2 

                      ( 
   

    
   )   (  

   

    
 )    (

   

    
   )      

  

and for j=3 

                     ( 
   

    
   )   (  

   

    
 )    (

   

    
   )     

  

therefore, we hence the algebraic system of three equations  
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(  
 

   
)    (

 

   
  )       ( 

 

   
  ) (    )

( 
 

   
  )    (  

 

   
)    (

 

   
  )     

( 
 

   
  )   (  

 

   
)       (

 

   
  ) (     )}

 
 

 
 

 

   
 

 
      

 

 
(    )

 
 

 
   

 

 
   

 

 
     

 
  

  
   

  

  
      

 

  
(     )}

 
 

 
 

 

then after solving this system, we obtain: 

x1=0.52143, x2-0.70714and x3=-1.4357 

Problems: 
1. Consider the following first-order ODE: 

  

  
  

 

 ⁄                          ( )    

 (a) Solve with Euler's explicit method using h = 0.7. 

(b) Solve with the modified Euler method using h = 0.7. 

(c) Solve with the classical fourth-order Runge-Kutta method using h = 0.7. 

The analytical solution of the ODE is   √
   

 
  . In each part, calculate the error between 

the true solution and the numerical solution at the points where the numerical solution is 

determined. 

2. Write the following second-order ODE as a system of two first-order ODEs: 

   

   
  (

  

  
)
 

            

3. Consider the following second-order ODE: 

   

   
  

  

  
                          ( )         ( )    

Using the difference formulas for approximating the derivatives, discretize the ODE (rewrite 

the equation in a form suitable for solution with the finite difference method). 


