
Digital Logic System Dr. Bushra A. Sultan

1

Lecture 1

1. Digital Computers:

The characteristic of digital systems is its manipulation of discrete elements of

information. Examples of discrete elements may be electrical impulses, decimal digits, the

letters of the alphabet, arithmetic operations, punctuation marks, and any other meaningful

symbols. Discrete elements of information are represented in a digital system by physical

quantities called signals. Electrical signals such as voltages are the most common. The

signals in all present-day electronic digital systems have only two discrete values and are

said to be binary.

2. Number Systems (Binary, Octal , Decimal and Hexadecimal):

Example: (7392.54)10=103*7+102*3+101*9+100*2+10-1 *5+10-2*4

 =7000+300+20+9+0.5+0.04

• When the base is equal to 10 the numbering system is named Decimal and the

coefficients range is (0,1,2,3,4,5,6,7,8,9)

In general a number with decimal points is represented by a series of coefficients as follows:

 (an….a3 a2 a1 a0 . a-1 a-2 a-3……a-m)10

The aj coefficients are one of the digits (0, 1, 2, 3…,9)

a3*103
+ a2*102

+ a1*101
+ a0*100

+ a-1*10-1
+ a-2*10-2

+ a-3*10-3

• The Binary number system is a different number system, the coefficients are (0 and

1) only and the base or radix 2, Ex:

Digital Logic System Dr. Bushra A. Sultan

2

• When the base is equal to 8 the numbering system is named Octal and the coefficients

range is (0, 1 , 2, 3, 4, 5, 6, 7), Ex:

• When the base is equal to 16 the numbering system is named Hexadecimal and the

coefficients range is (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F), where A=10, B=11,

C=12, D=13, E=14, F=15. Ex :

In general a number expressed in base (r) system has coefficients (0, 1….r-1), multiplied

by power of r

 rn
*an+…….+ r3

*a3+r2
*a2+r1

*a1+r0
*a0+r-1

*a-1+r-2
*a-2+........r-m

*a-m

When the base of the number is less than (10) the needed (r) digit of the coefficients are

borrowed from the decimal system. If the base is greater than (10) then the letters of the

alphabet are used.

3. Conversion from Decimal to Other Bases and vice versa.

3. A The conversion from any base r to decimal:

A number expressed in base r can be converted to its decimal equivalent by

multiplying each coefficient with corresponding power of r and adding.

Ex:

 72 71 70 7-1

(6 3 0 . 4)7 =6*72+3*71+0*70+4*7-1

 = 49*6+21+0+4/7= 294+21+0+0.571=(315.571)10

Digital Logic System Dr. Bushra A. Sultan

3

 82 81 80 8-1

(6 3 0 . 4)8 =6*82+3*81+0*80+4*8-1

 = 64*6+24+0+4/8= 384+24+0+0.5=(408.5)10

 23 22 21 20 2-1 2-2 2-3

(1 1 1 0 . 1 0 1)2 =1*23+1*22+1*21+0*20+1*2-1+0*2-2+1*2-3

 =8+4+2+0+1/2+0+1/8=14+0.5+0+0.125

 =(14.625)10

 162 161 160 16-1

(F 3 A . B)16 =F*162+3*161+A*160+B*16-1

 = 15*162+3*161+10*160+11*16-1

 =15*256+3*16+10*1+11/16

 =3840+48+10+0.6875=(3898.6875)10

3. B The Conversion from decimal to any base r:

Note: The conversion is more convenient if the number is separated into an

integer part and a fraction part so the conversion of each part is done separately.

Ex: Convert the decimal number (14.625) to binary (base 2)

Integer Remainder

14÷2

7÷2 0 a0

3÷2 1 a1

1÷2 1 a2

0 1 a3

(14)10=(1110)2

 Integer Fraction

0.625

* 2
=1. 25

a-1
1

0.25

*2
=0. 5

a-2
0

0.5

*2
=1. 0

a-3
1

0.00

(0.625)10=(0.101)2

(14. 625)10=(1110.101)2

Digital Logic System Dr. Bushra A. Sultan

4

Ex: Convert the decimal number (315.571) to (base 7)

Integer Remainder

315÷7

45÷7 0 a0

6÷7 3 a1

0 6 a2

(315)10=(630)7

 Integer Fraction

0. 571

* 7
=3. 997

a-1
3

0.997

*7
=6. 979

a-2
6

0.979

*7
=6.853

a-3
6

0.853

(0. 571)10=(0.366)7

(315.571)10=(630. 366)7

Ex: Convert the decimal number (314.21) to Hexadecimal (base 16)

Integer Remainder

314÷16

19÷16 A a0

1÷16 3 a1

0 1 a2

(314)10=(13A)16

 Integer Fraction

0. 21

* 16
=3. 36

a-1
3

0.36

*16
=5. 76

a-2
5

0.76

*16
=12.16

a-3
C

0.16

(0. 21)10=(0.35C)16

(314.21)10=(13A .35C)16

HW. Convert the following number to the indicated bases

1. (214.3)10 to base 4.
2. (10101.101)2 to decimal.
3. (124.03)5 to base 7.

Digital Logic System Dr. Bushra A. Sultan

5

4. (346.67)10 to base 16.
5. (124.34)10 to base 12.
6. (110101.1101)2 to decimal.
7. (42F.CB)16 to decimal
8. (111011010.001101)2 to Octal.
9. (12A.8)12 to Decimal.

4. A number with different bases:

Decimal

(0,1,..,9)

Binary

(0,1)

Octal

(0,1..,7)

Hexadecimal

(0,1,..9,A..F)

101 100 24 23 22 21 20 81 80 161 160

10 1 16 8 4 2 1 8 1 16 1

 0 0 0 0

 1 1 1 1

 2 1 0 2 2

 3 1 1 3 3

 4 1 0 0 4 4

 5 1 0 1 5 5

 6 1 1 0 6 6

 7 1 1 1 7 7

 8 1 0 0 0 1 0 8

 9 1 0 0 1 1 1 9

1 0 1 0 1 0 1 2 A

1 1 1 0 1 1 1 3 B

1 2 1 1 0 0 1 4 C

1 3 1 1 0 1 1 5 D

1 4 1 1 1 0 1 6 E

1 5 1 1 1 1 1 7 F

1 6 1 0 0 0 0 2 0 1 0

1 7 1 0 0 0 1 2 1 1 1

1 8 1 0 0 1 0 2 2 1 2

1 9 1 0 0 1 1 2 3 1 3

2 0 1 0 1 0 0 2 4 1 4

2 1 1 0 1 0 1 2 5 1 5

2 2 1 0 1 1 0 2 6 1 6

2 3 1 0 1 1 1 2 7 1 7

2 4 1 1 0 0 0 3 0 1 8

2 5 1 1 0 0 1 3 1 1 9

Digital Logic System Dr. Bushra A. Sultan

6

5. Octal, Hexadecimal and Binary numbers:

The conversion from and to binary (base 2), Octal (base 8) and hexadecimal (base 16)

plays an important part in digital computers, since 23=8 and 24=16 each octal digit

corresponds to 3-binary digits and each hexadecimal digit corresponds to 4-binary digits.

Ex:(1) (10110001101011.11110000011)2=(?)8=(26153.7406)8

 =(?)16=(2C6B.F06)16

(010 110 001 101 011 . 111 100 000 110)2

(2 6 1 5 3 . 7 4 0 6)8

(0010 1100 0110 1011 . 1111 0000 0110)2

(2 C 6 B . F 0 6)16

(2) (673.124)8=(?)2=(110111011.0010101)2

(6 7 3 . 1 2 4)8

(110 111 011 . 001 010 100)2

(3) (306.D)16=(?)2=(1100000110.1101)2

(3 0 6 . D)16

(0011 0000 0110 . 1101)2

HW. Convert the following number to the indicated bases

1. (456.7)8 to hexadecimal using the binary as intermediate base.
2. (98FE.0AB)16 to Octal using the binary as intermediate base.
3. (10AB.FE)16 to octal using the binary as intermediate base.
4. (6754.231)8 to Hexadecimal using the binary as intermediate base
5. (111011010.001101)2 to Octal.
6. (AD09.3C)16 to Binary.

Digital Logic System Dr. Bushra A. Sultan

7

6. Arithmetic Operation:

Addition (+), Subtraction (-), Multiplication (*)

Carry (1) (1) (1) (1)

Augend (1 0 1 1 0 1)2

Addend (1 0 0 1 1 1)2 +

Sum (10 1 0 1 0 0)2

 10

Borrow 0 0 10

Minuend (1 0 1 1 0 1)2

Subtrahend (1 0 0 1 1 1)2 -

Difference (0 0 0 1 1 0)2

Multiplicand (1 0 1 1)2

Multiplier (1 0 1)2 *

 (1) 1 0 1 1

 0 0 0 0 +

 1 0 1 1

Product (1 1 0 1 1 1)2

HW. Perform the following operation without converting to decimal or any

other base:

1. (1101.01 * 10.1)2=

2. (D39 + 16A)16=

3. (243.13 - 144.02)5 =

4. (11100.01 - 1110.11)2=

5. (243 * 24)5=

6. (FB09 - ED32)16=

7. (227.65 + 624.31)8=

8. (FD0D - AE21)16 =

9. (323 * 32)4 =

Digital Logic System Dr. Bushra A. Sultan

8

7. Complement and Subtraction using 1’s and 2’s Complement.

7.1 Complement:

 Complements are used in digital computers for simplifying the subtraction operation

and for logical manipulation. There are two types of complements for each base (r)

system:

I. The r’s complements

II. The (r-1)’s complements

 7.1.1 The r’s complements: A positive number N in base r with an integer part of n

digits, the r’s complement of N is defining as follows:

Ex:

(1) The 10’s complement of (925.67)10 is N=925.67, r=10, n=3→the 10’s complement

equal to: (103-925.67)10=1000-925.67=(74.33)10

(2) The 10’ complement of (0.3267)10 is N=0.3267, r=10, n=0→the 10’s complement equal

to: (100-0.3267)10=1-0.3267= (0.6733)10

(3) The 2’s complement of (101100)2 is N=101100, r=2, n=6 →the 2’s complement equal

to : (26)10-(101100)2=(1000000-101100)2= (10100)2

(4) The 2’s complement of (0.0110)2 is N=0.0110, r=2, n=0 →the 2’s complement equal to

: (20)10-(0.0110)2=(1-0.0110)2=(0.1010)2

 9 9 9 9

0 10 10 10 10 10

(1 0 0 0 . 0 0)10 -

(9 2 5 . 6 7)10

(0 0 7 4 . 3 3)10

 9 9 9

0 10 10 10 10

(1 . 0 0 0 0)10 -

(0 . 3 2 6 7)10

(0 . 6 7 3 3)10

 1 1 1

0 10 10 10 10

(1 0 0 0 0 0 0)2 -

(1 0 1 1 0 0)2

(0 0 1 0 1 0 0)2

 1 1

0 . 10 10 10

(1 . 0 0 0 0)2 -

(0 1 1 0)2

(0 . 1 0 1 0)2

rn-N for N≠0

0 for N=0

Digital Logic System Dr. Bushra A. Sultan

9

(5) The 9’complement of (0.3267)10 is N=0.3267, r=10, n=0,m=4→the 9’s complement

equal to: (100-10-4-0.3267)10=(1-0.0001)-0.3267=

 =0.9999-0.3267=(0.6732)10

7.1.2 The (r-1)’s complements:

A positive number N in base r with an integer part of n digits and a fraction part of m

digits, the (r-1)’s complement of N is defined as follows:

(1) The 9’s complement of (925.67)10 is N=925.67, r=10, n=3, m=2→the 9’s complement

equal to: (103-10-2-925.67)10=(1000 - 0.01) - 925.67=

 999.99-925.67=(74.32)10

(2) The 9’complement of (0.3267)10 is N=0.3267, r=10, n=0,m=4→the 9’s complement equal

to: (100-10-4-0.3267)10=(1-0.0001)-0.3267=

 =0.9999-0.3267=(0.6732)10

 9 9 9

0 10 10 10 10

(1 . 0 0 0 0)10 -

(0 . 0 0 0 1)10

(0 . 9 9 9 9)10

(0 . 9 9 9 9)10 -

(0 . 3 2 6 7)10

(0 . 6 7 3 2)10

 9 9 9 9

0 10 10 10 . 10 10

(1 0 0 0 . 0 0)10 -

(0 0 1)10

(0 9 9 9 . 9 9)10

(9 9 9 . 9 9)10

(9 2 5 . 6 7)10 -

(0 7 4 . 3 2)10

 9 9 9

0 10 10 10 10

(1 . 0 0 0 0)10 -

(0 . 0 0 0 1)10

(0 . 9 9 9 9)10

(0 . 9 9 9 9)10 -

(0 . 3 2 6 7)10

(0 . 6 7 3 2)10

rn-r-m-N

Digital Logic System Dr. Bushra A. Sultan

10

(3) The 1’s complement of (101100)2 is N=101100, r=2, n=6 ,m=0→the 1’s complement equal

to: (26-20)10-(101100)2=(1000000-1)2-(101100)2

 =(111111-101100)2=(10011)2

(4) The 1’s complement of (0.0110)2 is N=0.0110, r=2, n=0 ,m=4→the 1’s complement equal

to: (20-2-4)10-(0.0110)2=(1-0.0001)2-(0.0110)2

 =(0.1111-0.0110)2=(0.1001)2

(5) The 15’s complement of (E58C.D)16 is N= E58C.D, r=16, n=4 m=1→the 16’s complement

equal to : (164-16-1)10-(E58C.D)16=(10000-0.1)16- (E58C.D)16

 =(1A73.2)16

 1 1 1 1 1 1

0 10 10 10 10 10 10

(1 0 0 0 0 0 0)2 -

(1)2

(0 1 1 1 1 1 1)2

 (1 1 1 1 1 1)2 -

(1 0 1 1 0 0)2

(0 1 0 0 1 1)2

 1 1 1

 0 . 10 10 10 10

(1 . 0 0 0 0)2 -

(1)2

(0 . 1 1 1 1)2

(0 . 1 1 1 1)2 -

(0 . 0 1 1 0)2

(0 . 1 0 0 1)2

 F F F F

0 10 10 10 10 10

(1 0 0 0 0 . 0)16 -

(0 . 1)16

(F F F F . F)16

(F F F F . F)16 -

(E 5 8 C . D)16

(1 A 7 3 . 2)16

Digital Logic System Dr. Bushra A. Sultan

11

Note:

1. The 9’s complement of a decimal number is formed simply by subtracting every digit from 9.

2. The 1’s complement of a binary number is even simpler to form: 1's are changed to 0’s and

0’s to 1’s .

3. The r’s complement can be obtained from the (r-1)’s complement after the addition of r-m to

the least significant digit.

Ex: the 2’s complement of (10110100)2 obtained from the 1’s complement as follows:

1’s complement of (10110100)2=(25-2-0)10-(10110)2=(100000-1-10110)2=

 =(11111-10110)2=(01001)2

 2’s complement=1’s complement + r-m=1001+1=(1010)2

 2’s complement directly= (25)10-(10110)2=(100000-10110)= (1010)2

5.1.2 The complement of the complement is restoring the number its original value.

Ex: the r’s complement of N is rn-N

 The r’s complement of (rn-N) is rn-(rn-N)=rn-rn+N=N

H.W Prove the above example using (r-1)’s complement.

 1 1 1

0 10 10 10 10

(1 0 0 0 0 0)2 -

(1 0 1 1 0)2

(0 0 1 0 1 0)2

Digital Logic System Dr. Bushra A. Sultan

12

8. Alphanumeric Codes:

 Many applications of digital computers require handling name as well as letters. An

alphanumeric code is a binary code of a group of elements consisting of 10 decimal digits, the

26 letter of alphabet, certain number of special symbols such as $,;,’,…etc. The total number of

elements in an alphanumeric group is >36. So it must be coded with minimum number of bits

(26=64).

• ASCII code (American Standard Code for Information Interchange) 7-bit Length

code.

• EBCDIC code (Extended BCD Interchange Code) 8-bit Length code.

Letters ASCII code Letters ASCII code

 decimal binary decimal binary

A 65 100 0001 a 97 110 0001

B 66 100 0010 b 98 110 0010

:

Z 90 101 1010 z 122 111 1010

0 48 011 0000

1 49 011 0001

:

9 57 011 1001

$ 36 010 0100

(40 010 1000

? 47 010 1111

Digital Logic System Dr. Bushra A. Sultan

13

Lecture 2

9. Binary Logic and Gates

7.1 Binary logic:

Binary logic deals with the variables take two discrete values true and false, yes and no.

Binary logic is used to describe, in a mathematical way, the manipulation and processing of

binary information. It particularly suited for analysis and design of digital systems. Binary

Logic is equivalent to Boolean algebra.

7.2 Definition of Binary logic:

 Binary logic consists of binary variables and logic operation. The variables are

designated by letters e.g. A, B, C, r, w, x, y with only two distinct values: 1 and 0. The

basic logical operators are AND, OR and NOT.

 AND similar to * in binary arithmetic

 OR similar to + in binary arithmetic but 1+1=10 (in binary

 arithmetic)

 1+1= 1 (in binary logic)

7.3 Logic Gates:

Digital Circuits, Switching Circuits, Logic Circuits and Logic Gates are the same. Gates

are block of hardware that produces a logic-1 or logic-0 output signal if input logic requirement

are satisfied.

x 1

 0
0 0 1 1

y 1

 0
0 1 0 1

x.y 1

 0
0 0 0 1

x+y 1

0
0 1 1 1

x’ 1

0
1 1 0 0

Timing diagram illustrate the

response of each circuit to each of 4 input

binary combinations (00,01,10,11)

Digital Logic System Dr. Bushra A. Sultan

14

AND

Inputs Output

x y x.y

0 0 0

0 1 0

1 0 0

1 1 1

OR

Inputs Output

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

Input Output

x x̅

0 1

1 0

 The mathematical system of binary logic is better known as Boolean or switching

algebra. This algebra is conveniently used to describe the operation of complex network of

digital circuits. Designers of digital systems use Boolean algebra to transform circuits

diagram to algebraic expression and vice versa.

10. Integrated Circuits:

Is a small silicon semiconductor crystal, called a chip, containing electrical components

such as transistor, diodes, resistor and capacitor. The various components are interconnected

inside the chip to form electronic circuits. The chip is mounted on a metal or plastic packaged,

and connection are welded to external pins to form the IC. IC’s come in two types: 1) Flat

package 2) dual package

As the technology of ICs has improved, number of gates that can be put on a single silicon

chip has increased considerably.

 SSI chip contains less than 10 gates.

 MSI chip contains between 10 to 100 gates.

 LSI chip contains between 100 to 1000 gates.

 VLSI chip contains between thousands of gates.

Digital Logic System Dr. Bushra A. Sultan

15

11. Basic Identity of Boolean Algebra:

 a b

1 X+0=X X.1=X Identity Element

2 X+1=1 X.0=0

3 X+X=X X.X=X

4 ∀ 𝑋 ∈ 𝐵 ∃ 𝑋̅ 𝑠. 𝑡 X+X̅=1 X.X̅=0 Complement Definition

5 X̅̅=X

6 X+Y=Y+X X.Y=Y.X Commutative Law

7 X+(Y+Z)=(X+Y)+Z X.(YZ)=(XY).Z Associative Law

8 X.(Y+Z)=(X.Y)+(X.Z) X+(Y.Z)=(X+Y).(X+Z) Distributive Law

9 (X + Y)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = X̅. Y̅ (X. Y)̅̅ ̅̅ ̅̅ ̅ = X̅ + Y̅ Demorgan's Theorem

10 X+XY=X X(X+Y)=X Absorption Theorem

12. Boolean Functions:

 Boolean functions are formed from binary variables, logic operators and equal sign. the

function value can be either 1 or 0:

Ex: F1 = 𝑥𝑦𝑧̅

 F2 = 𝑥 + 𝑦̅𝑧

A Boolean function also represented in truth table. A Boolean function may be

transformed from an algebraic expression into a logic diagram or circuit composed of AND,

OR and NOT get.

NOTE: The operator precedence for evaluating Boolean expression is:

 1. Parentheses 2. NOT 3. AND 4. OR

Boolean

Expression
Logic Circuit Truth Table (T.T.)

F1 = 𝑥𝑦𝑧̅

Truth Table of F1

x y z z' F1=xyz'

0 0 0 1 0

0 0 1 0 0

0 1 0 1 0

0 1 1 0 0

1 0 0 1 0

Boolean Expression

Logic Circuit or Diagram Truth Table

expression

Digital Logic System Dr. Bushra A. Sultan

16

1 0 1 0 0

1 1 0 1 1

1 1 1 0 0

F2 = 𝑥 + 𝑦̅𝑧

Truth Table of F2

x y z y' y'z x+y'z

0 0 0 1 0 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 1 0 1

1 0 1 1 1 1

1 1 0 0 0 1

1 1 1 0 0 1

Complement of a function:

The complement of any function F is F`or F̅ its value can be obtained by interchange

the (1's to 0's) and (0's to 1's) in the value of F. the complement of a function may be obtained

algebraically through Demerger's theory.

Ex: Fined F̅ of F1 and F2.

𝐹1̅̅̅̅ = (𝑥𝑦𝑧̅)̅̅ ̅̅ ̅̅ ̅̅ = 𝑥̅ + 𝑦̅ + 𝑧̅̅ = 𝑥̅ + 𝑦̅ + 𝑧

𝐹2̅̅̅̅ = (𝑥 + 𝑦̅𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑥̅. 𝑦̅𝑧̅̅ ̅ = 𝑥̅. (𝑦̅̅ + 𝑧̅) = 𝑥̅. (𝑦 + 𝑧̅)

Lecture 3

13. Simplification of Boolean Functions using Boolean algebra.

Literal: is a single variable within the term that may be complemented or not. When a

Boolean function is implemented with logic gates, each literal in Boolean function is designated

an input to gate and each terms is implemented with gate. The minimization of a number of

literal and the number of terms results in circuit with less equipment. Boolean algebra is a useful

tool for simplifying digital circuit. Functions below simplified by using Boolean algebra.

Reduce the following Boolean expression using Boolean algebra to the indicated number of

literals:

1) F1=x'yz+x'yz'+xy to one literal

 = x'yz+x'yz'+xy

 =x'y(z+z') +xy (Distributive law)

 =x'y.1+xy (Complement definition)

 =x'y+xy (Identity element)

Digital Logic System Dr. Bushra A. Sultan

17

 =y(x'+x) (Distributive law)

 =y.1 (Complement definition)

 F1=y (Identity element)

2) F2=x+(x'y) to two literals

 =(x+x')(x+y) (Distributive law)

 =1.(x+y) (Complement definition)

 F2=x+y (Identity element).

3) F3=xy+x'z+yz to four literals

 = xy+x'z+yz.1 (Iidentity element)

 = xy+x'z+yz(x+x') (Complement definition)

 = xy+x'z+xyz+x'yz (Distributive law)

 =xy(1+z)+x'z(1+y) (Distributive law)

 =xy.1+x'z.1 (x+1)=1

 F3=xy+x'z (Iidentity element)

Truth Table of F3= xy+x'z

x Y z x' xy x'z F3=xy+x'z

0 0 0 1 0 0 0

0 0 1 1 0 1 1

0 1 0 1 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 1 0 1

1 1 1 0 1 0 1

4) F4 = 𝑥 + 𝑦(𝑧 + 𝑥 + 𝑧̅̅ ̅̅ ̅̅ ̅) to two literals
 = 𝑥 + 𝑦(𝑧 + 𝑥̅𝑧̅) (Demorgan's theory)

 = 𝑥 + 𝑦(𝑧 + 𝑥̅)(𝑧 + 𝑧̅) (Distributive law)

 = 𝑥 + 𝑦(𝑧 + 𝑥̅). 1 (Complement definition)
 = 𝑥 + 𝑦𝑧 + 𝑦𝑥̅ (Identity element)
 = (𝑥 + 𝑦𝑥̅) + 𝑦𝑧 (Commutative law)
 = (𝑥 + 𝑦)(𝑥 + 𝑥̅) + 𝑦𝑧 (Distributive law)
 = (𝑥 + 𝑦). 1 + 𝑦𝑧 (Complement definition)

 = 𝑥 + 𝑦 + 𝑦𝑧 (Identity element)
 = 𝑥 + 𝑦(1 + 𝑧) (Distributive law)
 = 𝑥 + 𝑦. 1 (Complement definition)

𝐹4 = 𝑥 + 𝑦 (Identity element)

HW.

Q1) Represent the decimal number (1729) using the following codes:

Digital Logic System Dr. Bushra A. Sultan

18

 1)BCD 2)Excess-3

 3)(8,4,-2,-1) 4) (2,4,2,1) self-complemented

Q2) Reduce the following Boolean expression using Boolean algebra to the
indicated number of literals:

1. XYZ + X̅Y + XYZ̅ to one literal
2. (A̅ + C̅)(A̅ + C)(A + B + C̅D) to four literals.
3. (X + Y)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (X̅ + Y) to two literals

4. [AB̅(C + BD) + A̅B̅]C to two literals

Q3) Draw the logic diagram of the following Boolean function without
simplifying them

1. F1 = BC̅ + AD
2. F2 = B(C̅ + A)

3. F3 = (X + Y)̅̅ ̅̅ ̅̅ ̅̅ ̅(X̅ + Y)

14. Canonical and Standard forms:

12. A Canonical form: canonical forms (Sum of Minterms or Product of Maxterms) are

used to obtain the function from the given truth table

x y z Minterms Notation Maxterms Notation

0 0 0 x'y'z' m0 (x+y+z) M0

0 0 1 x'y'z m1 (x+y+z') M1

0 1 0 x'yz' m2 (x+y'+z) M2

0 1 1 x'yz m3 (x+y'+z') M3

1 0 0 xy'z' m4 (x'+y+z) M4

1 0 1 xy'z m5 (x'+y+z') M5

1 1 0 xyz' m6 (x'+y'+z) M6

1 1 1 xyz m7 (x'+y'+z') M7

Variable

Primed if =0

Imprimed=1

Variable

Primed if =1

Imprimed=0

12. A .1 Sum of Minterms:

 A Boolean function may be expressed algebraically as a sum of minterms from a given

truth table by:

 Step1: forming a minterm for each combination of the variables which produce 1

 in the function.

 Step2: OR all of the minterms in step1.

Example: From the given truth table express F as a sum of minterms

Digital Logic System Dr. Bushra A. Sultan

19

Given Solution

Inputs Output Step1 Step2

x y z F minterms Sum of minterms

0 0 0 0 F= x'y'z+ x'yz+ xyz

0 0 1 1 x'y'z F=m1+m3+m7

0 1 0 0 F(x,y,z)=Σ(1,3,7)

0 1 1 1 x'yz

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1 xyz

From the table F' can be expressed as a sum of minterms as follows:

 Step1: forming a minterm for each combination of the variables which produce 0

 in the function.

 Step2: OR all of the minterms in step1.

Example: From the given truth table express F' as a sum of minterms

Given Solution

Inputs Inputs Step1 Step2

x y z F minterms Sum of minterms

0 0 0 0 x'y'z' F'= x'y'z'+ x'yz'+ xy'z'+ xy'z+ xyz'

0 0 1 1 F'=m0+m2+m4+ m5+m6

0 1 0 0 x'yz' F'(x,y,z)=Σ(0,2,4,5,6)

0 1 1 1

1 0 0 0 xy'z'

1 0 1 0 xy'z

1 1 0 0 xyz'

1 1 1 1

12. A .2 Product of Maxterms:

A Boolean function may be expressed algebraically as a product of maxterms from a given

truth table by:

 Step1: forming a maxterms for each combination of the variables which

 produce 0 in the function.

 Step2: form the AND of all the maxterms in step1.

Example: From the given truth table express F as a product of maxterms

Digital Logic System Dr. Bushra A. Sultan

20

Given Solution

Inputs Inputs Step1 Step2

x y z F maxterms Product of maxterms

0 0 0 0 (x+y+z) F=(x+y+z) (x+y'+z) (x'+y+z) (x'+y+z') (x'+y'+z)

0 0 1 1 F= M0.M2.M4. M5.M6

0 1 0 0 (x+y'+z) F(x,y,z)=Π(0,2,4,5,6)

0 1 1 1

1 0 0 0 (x'+y+z)

1 0 1 0 (x'+y+z')

1 1 0 0 (x'+y'+z)

1 1 1 1

From the table F' can be expressed as follows:

 Step1: forming a maxterm for each combination of the variables which produce 1

 in the function.

 Step2: form the AND of all the maxterms in step1.

Example: From the given truth table express F' as a product of maxterms

Given Solution

Inputs Inputs Step1 Step2

x y z F maxterms Product of maxterms

0 0 0 0 F'= (x+y+z') (x+y'+z') (x'+y'+z')

0 0 1 1 (x+y+z') F'=M1.M3.M7

0 1 0 0 F'(x,y,z)= Π (1,3,7)

0 1 1 1 (x+y'+z')

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1 (x'+y'+z')

12. B. Standard Forms:

 Sum terms: single variable or logical sum of several variables such as (A, B, (x+y), (A+C')).

Product terms: single variable or logical product of several variables such as (x, y, AB', CD')

Note: the expression x+y'z (not sum term nor product terms)

 12. B.1. Sum of Products (SOP): is a Boolean expression containing AND terms, called

product terms, of one or more literals each. The sum denotes the ORing of these terms. An

example of a function expressed as a sum of product is F1=y'+xy+x'yz'

The expression contains three product terms (y' one literal, xy two literals and x'yz' three

literals). Their sum is in effect an OR operation. The logic diagram if a sum-of-product

expression consist of a group of AND gates followed by a single OR gate.

Digital Logic System Dr. Bushra A. Sultan

21

 12. B.2 Product of Sums (POS): is a Boolean expression containing OR terms, called sum

terms, of one or more literals each. The product denotes the ANDing of these terms. An example

of a function expressed as a product of sum is F2=x(y'+z)(x'+y+z)

The expression contains three sum terms (x one literal, y'+z two literals and x'+y+z three

literals). The product is an AND operation. The logic diagram if a product-of-sum expression

consist of a group of OR gates followed by a single AND gate.

Note: a Boolean function may be expressed in a nonstandard form

 Ex: F = (AB + CD) (A'B' + C'D') is neither in sum of products nor product of sums. It

can be change to the standard form using the distributive law:

 F= ABA'B' + ABC'D' + CDA'B' + CDC'D'

 = 0 + ABC'D' + A'B'CD + 0

 F = ABC'D' + A'B'CD sum of products

H.W. Express F in a product of sums.

Example: From the given truth table express F as a sum of minterms then simplify as a sum of

product

Given

x y z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

Digital Logic System Dr. Bushra A. Sultan

22

Solution: the function equal to 1 in {(2,x'yz'),(3,x'yz),(6,xyz')}

So F=x'yz'+x'yz+xyz' (Sum of Minterms)

Simplification of F

F=x'yz'+x'yz+xyz'

 =x'y(z'+z)+xyz' (distributive law)

 =x'y.1+xyz' (complement definition)

 =x'y+xyz' (identity element)

 =y(x'+xz') (distributive law)

 =y(x'+x)(x'+z') (distributive law)

 =y.1.(x'+z') (complement definition)

 =y(x'+z') (identity element)

 =x'y+yz' (distributive law)

Example: From the given truth table express F

as a product of maxterms then simplify as a product of sum

Solution: the function equal to 0 in {(0,x+y+z),(1,x+y+z'),(4,x'+y+z),

(5,x'+y+z') ,(7,x'+y'+z')}

So F=(x+y+z)(x+y+z')(x'+y+z) (x'+y+z')(x'+y'+z') product of maxterms

Simplification of F

Given

x y z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

Digital Logic System Dr. Bushra A. Sultan

23

F=(x+y+z) (x+y+z') (x'+y+z) (x'+y+z') (x'+y'+z')

 =[(x+y)+zz'] [(x'+y)+zz')] (x'+y'+z') (distributive law)

=[(x+y)+0] [(x'+y)+0] (x'+y'+z') (complement definition)

=(x+y) (x'+y) (x'+y'+z') (identity element)

=(y+xx') (x'+y'+z') (distributive law)

= (y+0) (x'+y'+z') (complement definition)

= y(x'+y'+z') (identity element)

= x'y+yy'+yz' (distributive law)

=x'y+0+yz' (complement definition)

=x'y+yz' (identity element)

=y(x'+z') (distributive law) to convert the function from SOP to POS

12.C convert functions to the canonical forms:

12.C.1 conversion to sum of minterms:

 It is sometimes convenient to express function in its sum of minterms form by:

a. Expanding the expression in to sum of AND terms (SOP)

b. Each AND term is inspected to see if it contains all the variables. If it missing one or more

variables, it is ANDed with an expression (x+x'), where x is one of the missing variable

Example: Express the Boolean function F=A+B'C in a sum of minterms.

Solution: the function F has three variables A,B and C. it is in SOP standard form the first

product term (A) missing two variable (B,C); therefore

 A= A (B+B') = AB + AB'

Digital Logic System Dr. Bushra A. Sultan

24

This terms still missing one variable (C):

A= AB(C+C') + AB'(C+C')

= ABC + ABC' + AB'C + AB'C'

The second term (B'C) missing one variable (A):

B'C= B'C (A+A') = B'CA + B'CA' rearrange the variable alphabetically

B'C= AB'C + A'B'C

Combining all terms, we have:

F= A + B'C

 = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C

Since (x+x=x) we can eliminate one of the underlined term

F= A'B'C + AB'C' + AB'C + ABC' + ABC

 =m1 + m4 + m5 + m6 + m7

F(A,B,C)=Σ(1,4,5,6,7)

 12.C.2 Conversion to product of maxterms:

 To express function in its product of maxterms form by:

a. Expanding the expression in to product of OR terms (POS), using distributive law

b. Each OR term is inspected to see if it contains all the variables. If it missing one or

more variables, it is ORed with an expression (xx'), where x is one of the missing

variable

Example: Express the Boolean function F= xy +x'z in a product of maxtermes.

First: convert the function into OR terms (POS) by using distributive law:

 F= xy +x'z = let a=xy

 F= a + x'z = (a + x') (a + z) = (xy + x') (xy + z)

 = (x' + x) (x' + y) (z + x) (z + y)

 F = (x' + y) (z + x) (z + y)POS

The function has three variables x, y and z. each OR term is missing one variable; therefore:

(x' + y) = (x' + y) + zz' = (x' + y + z) (x' + y + z')

(z + x) = (z + x) + yy' = (z + x + y) (z + x + y') = (x + y + z) (x + y' + z)

(z + y) = (z + y) + xx' = (z + y + x) (z + y + x') = (x + y + z) (x' + y + z)

Digital Logic System Dr. Bushra A. Sultan

25

Combining all terms and removing all those that appear more than once, we finally obtain:

F= (x + y + z) (x + y' + z) (x' + y + z) (x' + y + z')

 = M0 M2 M4 M5

F(x,y,z) = Π (0, 2, 4, 5)

 12.C.3 Conversions between Canonical forms:

 To convert from one canonical form to another: interchanging the symbols Π and Σ then

list those numbers missing in the original form. In order to find the missing terms, one must

realize the total number of minterms and maxterms is 2n, where n is the number of binary

variables in the function.

Example: convert the Boolean function F(x,y,z)= Σ(0,2,4,5) to the other canonical form.

The number of variables is three (x, y, z), therefore the total numbers is in the range (0..23-

1)=(0..7) therefore, F(x,y,z)= Π (1,3,6,7)

Lecture 4

15. Other Logical Operations:

Name Graphical symbol Algebraic

function

Truth

table

AND

F=x.y x y F

0 0 0

0 1 0

1 0 0

1 1 1

OR

F=x+y x y F

0 0 0

0 1 1

1 0 1

1 1 1

NOT, Inverter

 x x'

0 1

1 0

Digital Logic System Dr. Bushra A. Sultan

26

Buffer

 x x

0 0

1 1

NAND

F= (xy)'

 = x↑y

x y F

0 0 1

0 1 1

1 0 1

1 1 0

NOR

F=(x+y)'

 = x↓y

x y F

0 0 1

0 1 0

1 0 0

1 1 0

XOR

F=x'y+xy'

 =x⊕y

x y F

0 0 0

0 1 1

1 0 1

1 1 0

XNOR

F=x'y'+xy

 =(x⊕y)'

 = x⨀y

x y F

0 0 1

0 1 0

1 0 0

1 1 1

Exclusive OR (XOR): odd function equal to 1 if the numbers the input variables have an

odd number of 1's and 0 otherwise. The construction of 2-input Exclusive-OR function is

shown below. It is normally implemented by cascading 2-input gates, as shown in below:

x y z F=x⊕y⊕𝑧

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Digital Logic System Dr. Bushra A. Sultan

27

The following identities apply to Exclusive –OR operation:

x ⊕0=x , x⊕x=0 , x ⊕y' = x' ⊕y = (x ⊕y)'

x ⊕1=x' , x ⊕x'=1 ,

Equivalence or Exclusive NOR: even function equal to 1 if the number of 0's in the input

variables are even and 0 otherwise.

XOR and Equivalence are both commutative and associative.

x↑y=(xy)'=x'+y' y↑x=(yx)'=y'+x'=x'+y' ∴ NAND is commutative

x↓y=(x+y)'=x'y' y↓x=(y+x)'=y'x'=x'y' ∴ NOR is commutative

(x↑y)↑z=(xy)'↑z=((xy)' z)'= (xy)"+ z'= xy+z'

x↑(y↑z)= x↑(yz)'=(x' (yz)')'= x'+(yz)"=x' +yz ∴ NAND is not associative.

H.W. Neither prove that NOR is associative or not.

16. NAND and NOR gates.

Two other gates, NAND and NOR are often used in computer. To show any function

can be implemented with NAND or NOR gates, we need only show that the logical

operations of AND & OR can be obtained from NAND or NOR only.

AND gate OR gate

Using

NAND

Using

NOR

13. Map Simplification:

Digital Logic System Dr. Bushra A. Sultan

28

Boolean function may be simplified by algebraic means, but this procedure lacks

specific rules to predict each succeeding step in the manipulation process. The map

method provides a simple straight forward procedure for minimizing Boolean functions.

The map is a diagram made up of squares each square represents one minterms.

13.1 Two and Three variables maps:

in two variable map, there are 4 minterms hence the map consists of four squares

, one for each minterm.

Example: simplify F using map method, where F(x,y)=∑(1,2,3)

Example: simplify F using map method, where F(x,y)=∑(3)

A three variable map is shown below, note that the minterms are arranged, not in

binary sequence, the characteristic of this sequence is that the only one bit changed from

(1 to 0) or from (0 to 1) in the listing sequence.

Digital Logic System Dr. Bushra A. Sultan

29

The basic property proposed by the adjacent squares that only two adjacent squares

in the map differ by only one variable which is primed in one square and unprimed in

the other. For example m6 and m7 hence, the sum of two minterms in the adjacent square

can be simplified to a simple AND term consisting of only two literals

m6+m7= xyz' + xyz = xy (z'+z) = xy . 1 = xy

Example: simplify F using map method, where F(x,y,z)=∑(0,1,4,6,7)

Example: simplify F using map method, where F(x,y,z)=∑(3,4,6,7)

Example: simplify F using map method, where F(x,y,z)=∑(0,2,4,6)

Digital Logic System Dr. Bushra A. Sultan

30

Example: simplify F using map method, where F(x,y,z)=∑(1,3,5,6,7)

Note:- any combination of 4 adjacent squares in the 3-variables map, which represents

the ORing of four adjacent minterms will result in an expression of only one literals.

Example: simplify F using map method,

where F= A'B'C' + A'C + A'B + AB'C + BC

Sol.: the terms need to be expressed as a sum of minterms as explain before, so A'C

missing B, A'B missing C and BC missing A

F= A'B'C' +A'C (B+B') + A'B(C+C') + AB'C + BC(A+A')

 = A'B'C' +A'BC+ A'B'C + A'BC + A'BC' + AB'C + ABC + A'BC

 = A'B'C' +A'B'C +A'BC' + A'BC + AB'C + ABC

∴ F(A,B,C)=∑(0,1,2,3,5,7) and the simplification of F using the map methods is as

follows:

Digital Logic System Dr. Bushra A. Sultan

31

13.2 Four variables map:-

The combinations of adjacent squares that is useful during the simplification

process easily determined for inspection of the 4-variable map

 (20)One square represents one minterm, given a term of 4 literals

 (21)Two adjacent squares represents a term of 3 literals.

 (22)Four adjacent squares represents a term of 2 literals.

 (23)Eight adjacent squares represents a term of 1 literal.

 (24)Sixteen adjacent squares the function equal to 1 (constant)

Example: simplify F using map method, where F(A,B,C,D)=∑(0,1,2,4,5,6,8,9,12,13,14)

Digital Logic System Dr. Bushra A. Sultan

32

Example: simplify F using map method, where F(A,B,C,D)=∑(0,1,2,6,8,9,10)

Example: simplify F using map method,

Where, F(w,x,y,z)=∑(2,3,7,8,9,10,11,15)

Digital Logic System Dr. Bushra A. Sultan

33

14. Product of Sum Simplification.

The minimized Boolean function derived from the map in all previous example

were expressed in the sum of product form, with a minor or modification the

product of sums forms can be obtained.

Example: simplify F using map method as a) sum of products b) product of sums,

where F(A,B,C,D)=∑(2,3,4,5,10,11,12,13,14,15)

15. Don’t care Conditions:

Digital Logic System Dr. Bushra A. Sultan

34

The don't care conditions can be used on a map to provide further simplification of

the function. To distinguish the don't care conditions from 1's and 0's , an X will be

used. When choosing the adjacent square to simplify the function in a map, the X's may

be assumed to be either (0 or 1) whichever gives the simple expression.

Example: simplify F using map method as a) sum of products b) product of sums,

where F(A,B,C,D)=∑(4,10,11,12,14,15) and the don't care conditions

d(A,B,C,D)=∑(2,3,5,13)

16. NAND and NOR implementations.

16.1. NAND circuits:

 The Boolean functions can be implemented with two levels of NAND gates

by:

a) Simplifying the function and express in sum of product term.

b) Draw NAND gate for each product term of expression that has at least two

literals. The inputs of each of each NAND gates are the literals of the term. This

constitutes a group of first-level gates.

c) Draw single gate using the AND-invert graphic symbol in the second level, with

inputs coming from outputs of the first level gates.

d) A term with single literal requires an inverter in the first level.

Example: implement F with NAND gates, where F(x,y,z)=∑(1,2,3,4,5,7)

Digital Logic System Dr. Bushra A. Sultan

35

16.2. NOR circuits:

The Boolean functions can be implemented with two levels of NOR gates by:

a) Simplifying the function and express in product of sums term.

b) Draw NOR gate for each sum term of expression that has at least two literals.

The inputs of each of each NOR gates are the literals of the term. This constitutes

a group of first-level gates.

c) Draw single gate using the OR-invert graphic symbol in the second level, with

inputs coming from outputs of the first level gates.

d) A term with single literal requires an inverter in the first level.

Example: implement F with NOR gates, where F(x,y,z)=∑(1,3,4,5)

Digital Logic System Dr. Bushra A. Sultan

36

Lecture 5

17. Combinational Circuits

Logic circuits whose outputs at any time are determined directly and only from the

present input combination

A. Analysis Procedure:

 Boolean Expression Approach:

 Label all gate outputs that are functions of the input variables only. Determine

the functions.

 Label all gate outputs that are functions of the input variables and previously

labeled gate outputs, and find the functions.

 Repeat previous step until all the primary outputs are obtained.

Ex.1 Analyze the circuit shown in the following figure:

Digital Logic System Dr. Bushra A. Sultan

37

Solution: Step1:

Solution : Step2:

𝐹2̀ = (𝐴̀ + 𝐵̀)(𝐴̀ + 𝐶̀)(𝐵̀ + 𝐶̀)

𝑇3 = 𝑇2. 𝐹2̀

𝑇3 = (𝐴 + 𝐵 + 𝐶) (𝐴̀ + 𝐵̀)(𝐴̀ + 𝐶̀)⏟ (𝐵̀ + 𝐶̀)

𝑇3 = (𝐴 + 𝐵 + 𝐶) (𝐴̀ + 𝐵̀𝐶̀)⏟ (𝐵̀ + 𝐶̀)⏟

𝑇3 = (𝐴 + 𝐵 + 𝐶) (𝐴̀𝐵̀ + 𝐴̀𝐶̀ + 𝐵̀𝐶̀𝐵̀ + 𝐵̀𝐶̀𝐶̀)⏟

𝑇3 = (𝐴 + 𝐵 + 𝐶) (𝐴̀𝐵̀ + 𝐴̀𝐶̀ + 𝐵̀𝐶̀)⏟

𝑇3 = 𝐴𝐴̀𝐵̀⏞
=0

+ 𝐴𝐴̀𝐶̀⏞
=0

+ 𝐴𝐵̀𝐶̀ + 𝐵𝐴̀𝐵̀⏞
=0

+ 𝐵𝐴̀𝐶̀ + 𝐵𝐵̀𝐶̀⏞
=0

+ 𝐶𝐴̀𝐵̀ + 𝐶𝐴̀𝐶̀⏞
=0

+ 𝐶𝐵̀𝐶̀⏞
=0

𝑇3 = 𝐴𝐵̀𝐶̀ + +𝐴̀𝐵𝐶̀ + 𝐴̀𝐵̀𝐶

𝐹1 = 𝑇1 + 𝑇3

𝐹1 = 𝐴𝐵𝐶⏟
7

+ 𝐴𝐵̀𝐶̀⏟
4

+ + 𝐴̀𝐵𝐶̀⏟
2

+ + 𝐴̀𝐵̀𝐶⏟
1

HW. Derive the T.T. of the F1 and F2

Digital Logic System Dr. Bushra A. Sultan

38

B. Design Procedure:

The steps to design combinational circuits are as the following:

1. Understand the problem

2. Determine the number of input and output variables that are needed.

3. Give symbols for the stated input and output.

4. Construct a truth table that defines the relationship between the input and output.

5. Obtain the Boolean function or the logical expression from the truth

 table in step 4, using K-map map or other known methods.

6. Draw a logic circuit based on the expression obtained from step 5 above.

Ex.2. Design a circuit that accept 3-bit binary number and produce 1 if the number of

0's greater than the number of 1's in the input combination and produce 0 otherwise.

Solution:

 Generate the truth table

Inputs
N0. of 0's and 1's in the

input combinations
Condition Output

22 21 20
N0. of

0's

N0. of

1's
Is N0. Of 0's > N0. of 1's? F

0 0 0 3 0 Is (3>0)=T 1

0 0 1 2 1 Is (2>1)=T 1

0 1 0 2 1 Is (2>1)=T 1

0 1 1 1 2 Is (1>2)=F 0

1 0 0 2 1 Is (2>1)=T 1

1 0 1 1 2 Is (1>2)=F 0

1 1 0 1 2 Is (1>2)=F 0

1 1 1 0 3 Is (0>3)=F 0

Inputs Output

X Y Z F

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

 Express each output function as sum of minterms:

 F(X,Y,Z)=∑(0,1,2,4)

 Simplify each output function using(Boolean algebra or Map method)

Digital Logic System Dr. Bushra A. Sultan

39

 Draw the

logic circuit of

the output

function

Ex.3. Design a combinational circuit that accepts 3-bit binary number and produces the

number of 1's in each input combination in binary.

Solution:

Inputs Output

22 21 20 N0. Of 1's

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

1 0 0 1

1 0 1 2

1 1 0 2

1 1 1 3

 Number of output variables=2 {since maximum value =3 needs 2 binary digits to be

written (3)10=(11)2

 Assign symbols to the input and output columns

Digital Logic System Dr. Bushra A. Sultan

40

Inputs Outputs in binary

22 21 20 21 20

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Inputs Outputs in binary

x y z A B

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

 Express each output function as sum of minterms:

 A(X,Y,Z)=∑(3,5,6,7)

 B(X,Y,Z)=∑(1,2,4,7)

 Simplify each output function (A and B) using Map method

∵ There are 3 input variables ∴ use 3-Var. map 23=8 squares

 Draw 2-maps (one for each output functions)

A=xz + yz + xy B=x⨁y⨁z

𝐴 = 𝑥𝑧 + 𝑦𝑧 + 𝑥𝑦

𝐵 = 𝑥̅𝑦̅𝑧 + 𝑥̅𝑦𝑧̅ + 𝑥𝑦̅𝑧̅ + 𝑥𝑦𝑧

𝐵 = 𝑥̅(𝑦𝑧̅ + 𝑦̅𝑧) + 𝑥(𝑦̅𝑧̅ + 𝑥𝑦)

𝐵 = 𝑥̅(𝑦 ⊕ 𝑧) + 𝑥(𝑦 ⊙ 𝑧)

Let 𝐴 = (𝑦 ⊕ 𝑧) ∴ 𝐴̅ = (𝑦 ⊙ 𝑧)

𝐵 = 𝑥̅𝐴 + 𝑥𝐴̅

𝐵 = 𝑥 ⊕ 𝐴

Digital Logic System Dr. Bushra A. Sultan

41

𝐵 = 𝑥 ⊕ 𝑦⨁𝑧

 Draw the circuit

Lecture 6

18. Adder

18.1. Half Adder (HA)

A half adder is a logical circuit that performs an addition operation on two binary bits.

X 0 0 1 1

 + + + +

Y 0 1 0 1

 = = = =

Carry 1

Sum 0 1 1 0

inputs Outputs in

Binary

21 20 21 20

X Y addition Carry Sum Minterms

0 0 0 0 0

 0 1 1 0 1 X̅Y (S)

1 0 1 0 1 XY̅(S)

1 1 2 1 0 XY (C)

Digital Logic System Dr. Bushra A. Sultan

42

𝑆
= 𝑋̅𝑌 + 𝑋𝑌 ̅ …1

𝐶
= 𝑋𝑌

𝑆 = 𝑋⨁𝑌 …2
𝐶 = 𝑋𝑌

18.2. Full adder (FA)
A full adder is a logical circuit that performs the arithmetic sum of three binary bits

(two significant and the previous carry)

Inputs Outputs in binary

x y z Carry Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Digital Logic System Dr. Bushra A. Sultan

43

Design FA using HA

Digital Logic System Dr. Bushra A. Sultan

44

Design FA using 2-HA and external OR gate

2.3 Binary Adder:
A binary adder is a digital circuit that produces the arithmetic sum of two binary

numbers. It can be constructed with full adder in cascaded.

4-Bit Adder

19. Magnitude Comparator
The comparison of two numbers is an operation that determine if one number is

greater than, less than, or equal to the other number. A magnitude comparator is

combinational circuit that compares two numbers, A and B, and determines their relative

magnitude. The outcome of the comparison is specified by three binary variables that

indicate whether A>B, A=B, and A<B.

The circuit of comparing two n-bit binary numbers has 22n entries in the truth table

19.1. 1-bit comparator circuit

A B A>B A<B A=B

0 0 0 0 1

0 1 0 1 0

1 0 1 0 0

1 1 0 0 1

Digital Logic System Dr. Bushra A. Sultan

45

𝐴 > 𝐵 = 𝐴𝐵̅

𝐴 < 𝐵 = 𝐴̅𝐵

(𝐴 = 𝐵) = 𝐴̅𝐵̅ + 𝐴𝐵 = 𝐴⊙ 𝐵

 = (𝐴⊕ 𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 = (𝐴𝐵̅ + 𝐴̅𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

19.2. 2-bit comparator circuit

A comparator circuit processes a certain amount of regularity. Digital function which

processes an inherent well-defined regularity can usually be designed by means of an

algorithmic procedure if one is found to exist. An algorithm is a procedure that specifies

a finite set of steps which, if followed, give the solution to the problem. We illustrate

this method by deriving an algorithm for the design of a 2-bit magnitude comparator.

Consider two numbers A and B where

 A= A1 A0

 B= B1 B0

• The two numbers are equal if all pairs of significant digit are equal (i.e. A1= B1

and A0= B0)

X1= (A1= B1)

 X0= (A0= B0)

• A greater than B if (A1>B1) OR (A1= B1) AND (A0>B0)

• A less than B if (A1<B1) OR (A1= B1) AND (A0<B0)

(A=B)= X1 X0

(A>B)= (A1>B1) + X1 (A0>B0)

(A<B)= (A1<B1) + X1 (A0<B0)

The circuit of 2-bit comparator is derived by repeating 1-bit comparator circuit

for each pair of numbers (i.e. (A1,B1) and (A0,B0)) as shown in the following figure

Digital Logic System Dr. Bushra A. Sultan

46

19.3. 4-bit comparator circuit

 Consider two numbers A and B where

 A= A3 A2 A1 A0

 B= B3 B2 B1 B0

• The two numbers are equal if all pairs of significant digit are equal (i.e. A3= B3,

A2= B2, A1= B1 and A0= B0)

 Xi= (Ai= Bi) where i=0,1,2,3

• A greater than B if (A3>B3) OR X3 AND (A2>B2) OR X3 X2 AND (A1>B1) OR

X3 X2 X1 AND (A0>B0)

• A less than B if (A3<B3) OR X3 AND (A2<B2) OR X3 X2 AND (A1<B1) OR X3

X2 X1 AND (A0<B0)

 (A=B)= X3 X2 X1 X0

 (A>B)= (A3>B3) + X3(A2>B2) +X3 X2 (A1>B1) +X3 X2 X1 (A0>B0)

 (A<B)= (A3<B3) + X3(A2<B2) +X3 X2 (A1<B1) +X3 X2 X1 (A0<B0)

The circuit of 4-bit comparator is derived by repeating 1-bit comparator circuit for

each pair of numbers (i.e. (A3,B3),(A2,B2), (A1,B1) and (A0,B0)) as shown in the following

figure

Digital Logic System Dr. Bushra A. Sultan

47

Digital Logic System Dr. Bushra A. Sultan

48

Lecture 7

20. Decoder
A binary code of n bits is capable of representing up to 2n distinct binary code.

A decoder is a combinational circuit that converts binary information from n input

lines to a maximum of 2n unique output lines. If the n-bit decoded information has

unused or don’t-care combinations, the decoder output will have less than 2n outputs.

Ex6. Design 2-to-4 line decoder

Inputs Outputs

x y D3 D2 D1 D0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

𝐷3 = 𝑋𝑌

𝐷2 = 𝑋𝑌̅

𝐷1 = 𝑋̅𝑌

𝐷0 = 𝑋̅𝑌̅

Ex7. Design 3-to-8 line decoder or design binary to Octal decoder

• How many bits in binary needs to configure one Octal digit?

 Three binary bits needs to configure one octal digit, thus the input variables are

three

• The octal system coefficients are (0,1,2,3,4,5,6,7), thus the output lines are eights

Inputs Outputs
x y z D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Digital Logic System Dr. Bushra A. Sultan

49

𝐷7 = 𝑋𝑌𝑍

𝐷6 = 𝑋𝑌𝑍̅

𝐷5 = 𝑋𝑌̅𝑍

𝐷4 = 𝑋𝑌̅𝑍̅

𝐷3 = 𝑋̅𝑌𝑍

𝐷2 = 𝑋̅𝑌𝑍̅

𝐷1 = 𝑋̅𝑌̅𝑍

𝐷0 = 𝑋̅𝑌̅𝑍̅

Ex8. Design BCD-to-Decimal decoder

The elements of information in this case are ten decimal digits represented by

BCD code. The code itself has four bits. Therefore, the decoder should have four inputs

to accept the coded digit and ten outputs, one for each decimal digit. This will give a 4-

line to 10-line BCD-to-Decimal decoder

Inputs Outputs

w x y z D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0 0 0 0 0

0 1 1 1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 0

Don’t care input combinations

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Digital Logic System Dr. Bushra A. Sultan

50

𝐷9 = 𝑊𝑍

𝐷8 = 𝑊𝑍̅

𝐷7 = 𝑋𝑌𝑍

𝐷6 = 𝑋𝑌𝑍̅

𝐷5 = 𝑋𝑌̅𝑍

𝐷4 = 𝑋𝑌̅𝑍̅

𝐷3 = 𝑋̅𝑌𝑍

𝐷2 = 𝑋̅𝑌𝑍̅

𝐷1 = 𝑊̅𝑋̅𝑌̅𝑍

𝐷0 = 𝑊̅𝑋̅𝑌̅𝑍̅

21. Multiplexer:
Is also called the data selector, since it selects one of many inputs. A digital

multiplexer (MUX) is a combinational circuit that selects binary information from one

of many inputs lines and directs it to a single output line. The selection of particular

input lines is controlled by a set of selection lines. Normally there are 2n input lines and

n selection lines whose bit combinations determine which input is selected.

Ex12. Design 2-to-1 MUX

 2 is the number of the input variable (I1,I0)

2=2n → n=1 where n is the selection variable (S)

Digital Logic System Dr. Bushra A. Sultan

51

Selection-line Output

S Y

0 I0

1 I1

Ex13. Design 4-to-1 MUX

 4 is the number of the input variable (I3,I2,I1,I0)

4=2n =22→ n=2 where n is the selection variable (S1,S0)

Selection-line Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Digital Logic System Dr. Bushra A. Sultan

52

The AND gates and inverter in multiplexer resemble a decoder circuit and they

decode the input selection lines. In general 2n to 1 line MUX is constructed from n-to-

2n decoder by adding to its 2n input lines, one to each input lines.(see Ex12. 2-inputs

s1s0 , 4 AND gets each has 3- input variables (s1, s0 and either { I3,I2,I1,I0}).

The size of a multiplexer is specified by the 2n of its input lines and a single output lines.

It is then implied that it also contain n selection lines.

21.1. Boolean Function Implementation

A decoder can be used to implement a Boolean function by employing an external

OR gate. The multiplexer is a decoder with OR gate already available.

If we have a Boolean function of n+ 1 variable, we take n of these variables and connect

them to the selection lines of a multiplexer. The remaining single variable of the function

is used for the input lines of the multiplexer.

Ex. Implement F(A,B,C)=∑(1,3,5,6) using MUX, select A as input variable.

∵ A is used as input variable. ∴ The reaming two variables (B,C) are used as selection

lines

∴ n=2 is the number of selection lines (B,C) →22=4 is the number of input lines

(I3,I2,I1,I0) that must be written in terms of input variable (A)

Minterms A B C F

0

𝐴̅

0 0 0 0

1 0 0 1 1

2 0 1 0 0

3 0 1 1 1

4

𝐴

1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 0

 Input lines

I0 I1 I2 I3

In
p

u
t

v
a
r.

 𝐴̅ 0 1 2 3

𝐴 4 5 6 7

0 1 𝐴 𝐴̅

Selection-line Output

B C F

0 0 I0=0

0 1 I1=1

1 0 I2=𝐴

1 1 I3=𝐴̅

 Input lines

I0 I1 I2 I3

In
p

u
t

v
a

r.

𝐴̅ 0 1 0 1

𝐴 0 1 1 0

0 1 𝐴 𝐴̅

Digital Logic System Dr. Bushra A. Sultan

53

Ex. Implement F(A,B,C,D)=∑(0,1,3,4,8,9,15) using MUX, select B as input variable.

∵ B is used as input variable. ∴ The reaming three variables (A,C,D) are used as

selection lines

∴ n=3 is the number of selection lines (A,C,D) →23=8 is the number of input lines

(I7,I6,I5,14,I3,I2,I1,I0) that must be written in terms of input variable (B)

Minterms A B C D F

0

𝐵̅

0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4

𝐵

0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8

𝐵̅

1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12

𝐵

1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

 Input lines

I0 I1 I2 I3 I4 I5 I6 I7

In
p

u
t

v
a
r.

 𝐵̅ 0 1 2 3 8 9 10 11

𝐵 4 5 6 7 12 13 14 15

1 𝐵̅ 0 𝐵̅ 𝐵̅ 𝐵̅ 0 𝐵

Selection-line Output

A C D F

0 0 0 I0=1

0 0 1 I1=𝐵̅

0 1 0 I2=0

0 1 1 I3=𝐵̅

1 0 0 I4=𝐵̅

1 0 1 I5=𝐵̅

1 1 0 I6=0

1 1 1 I7=𝐵

 Input lines

I0 I1 I2 I3 I4 I5 I6 I7

In
p

u
t

v
a

r.
 𝐵̅ 1 1 0 1 1 1 0 0

𝐵 1 0 0 0 0 0 0 1

1 𝐵̅ 0 𝐵̅ 𝐵̅ 𝐵̅ 0 𝐵

Digital Logic System Dr. Bushra A. Sultan

54

Ex. Implement F-A using Dual-MUX, let the most significant variable is the input

variable.

Inputs Outputs in binary

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

• The output functions must be written as

S.O. minterms as:

C(x,y,z)=∑(3,5,6,7)

 S(x,y,z)=∑(1,2,4,7)

∵ x is used as input variable. ∴ the reaming two variables (y,z) are used as selection

lines → n=2

 22=4 is the number of input lines(,I3,I2,I1,I0) that must be written in terms of input

variable (x)

C Input lines

I0 I1 I2 I3

In
p

u
t

v
a

r.
 𝑥̅ 0 1 2 3

𝑥 4 5 6 7

0 𝑥 𝑥 1

S Input lines

I0 I1 I2 I3

In
p

u
t

v
a

r.
 𝑥̅ 0 1 2 3

𝑥 4 5 6 7

 𝑥 𝑥̅ 𝑥̅ 𝑥

Digital Logic System Dr. Bushra A. Sultan

55

Selection-lines Output

y z C S

0 0 I0=0 I0= 𝑥

0 1 I1= 𝑥 I1=𝑥̅

1 0 I2=𝑥 I2=𝑥̅

1 1 I3=1 I3=𝑥

Digital Logic System Dr. Bushra A. Sultan

56

Lecture 8

22. Sequential Circuits

As shown in the block diagram of a sequential circuit. It consists of a

combinational circuit to which storage elements are connected to form a feedback path.

The storage elements are devices capable of storing binary information. The binary

information stored in these elements at any given time defines the state of the sequential

circuit at that time. The sequential circuit receives binary information from external

inputs that, together with the present state of the storage elements, determine the binary

value of the outputs. These external inputs also determine the condition for changing the

state in the storage elements.

• The block diagram demonstrates that the outputs in a sequential circuit are a function

not only of the inputs, but also of the present state of the storage elements.

• The next state of the storage elements is also a function of external inputs and the

present state. Thus, a sequential circuit is specified by a time sequence of inputs,

outputs, and internal states.

• In contrast, the outputs of combinational logic depend only on the present values of

the inputs.

There are two main types of sequential circuits, and their classification is a function of

the timing of their signals. A synchronous sequential circuit is a system whose behavior

can be defined from the knowledge of its signals at discrete instants of time. The

behavior of an asynchronous sequential circuit depends upon the input signals at any

instant of time and the order in which the inputs change.

A synchronous sequential circuit employs signals that affect the storage elements

at only discrete instants of time. Synchronization is achieved by a timing device called

a clock generator, which provides a clock signal having the form of a periodic train of

clock pulses . Synchronous sequential circuits that use clock pulses to control storage

elements are called clocked sequential circuits

Digital Logic System Dr. Bushra A. Sultan

57

The storage elements (memory) used in clocked sequential circuits are called flip

flops. A flip-flop is a binary storage device capable of storing one bit of information. In

a stable state, the output of a flip-flop is either 0 or 1. A sequential circuit may use many

flip-flops to store as many bits as necessary

22.1 Basic Flip-Flops

The basic flip-flop can be constructed from two cross-coupled NOR gates or two

cross-coupled NAND gates, and two inputs labeled S for set and R for reset.

Digital Logic System Dr. Bushra A. Sultan

58

20.2 Clocked SR Flip-Flop

Function Table when CP=1

Q S R Qt+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 Indeterminate

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 Indeterminate

20.3 D Flip-Flop

One way to eliminate the undesirable condition of the indeterminate state in the

SR flip-flop is to ensure that inputs S and R are never equal to 1 at the same time. This

is done in the D flip-flop.

Digital Logic System Dr. Bushra A. Sultan

59

Function Table

when CP=1

Q D Qt+1

0 0 0

0 1 1

1 0 0

1 1 1

20.4 JK Flip-Flop

.

Digital Logic System Dr. Bushra A. Sultan

60

Function Table when CP=1

Q J K Qt+1

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Function Table
CP J K Qt+1

0 X X Q No change

1 0 0 Q No change

1 0 1 0

1 1 0 1

1 1 1 Q' Complement

20.5 T Flip-Flop

Function

Table

when CP=1

Q T Qt+1

0 0 0

0 1 1

1 0 1

1 1 0

Function Table

CP T Qt+1

0 X Q No change

1 0 Q No change

1 1 Q' Complement

