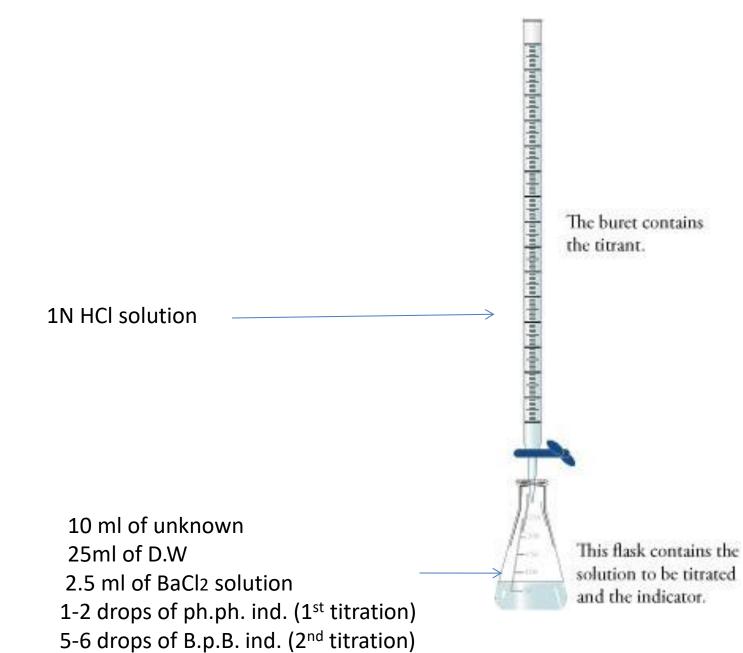
Assay of sodium hydroxide solution


NaOH solution

 From B.p, NaOH solution contains not less than 97.5% w/w of total alkali (as NaOH) and not more than 2.5 % w/w Na₂CO₃.

• Assay:

- > 10 ml of unknown(bulb pipette).
- > 25 ml of distilled water.
- > Add 2.5 ml of barium chloride solution.
- Titrate with 1N HCl solution using 1-2 drops of phenolphthalein indicator.
- The first end point from pink colorless(turbid)
- ➤ To the turbid sol. add 5 drops of Bromophenol Blue indicator and complete titration with 1N HCl.
- The second end point bluish violet —yellowish green

Chemical principle:

- NaOH is strong base, absorbs CO₂
 2NaOH + CO₂ → Na₂CO₃ + H₂O
- both NaOH and Na₂CO₃ react with HCl
 NaOH + HCl → NaCl + H₂O
 Na₂CO₃ + 2HCl → 2NaCl + H₂O + CO₂

When we assay a sample, we do the assay for total alkalinity contributed to NaOH and Na₂CO₃.

 Barium chloride (BaCl₂) is added to precipitate all carbonate

• 1st titration:

NaOH + HCl ——— NaCl + H₂O Why HCl do not react with BaCO₃? Why the end point is turbid?

• 2nd titration:

 $2HCI + BaCO_3 \longrightarrow BaCI_2 + H_2O + CO_2$

definition of <u>chemical factor</u>: the weight of substance that is chemically equivalent to 1ml of std. solution.

- Calculation of the *chemical factor*.
- a) From reaction of HCl with NaOH:
- 1Mwt of NaOH \equiv 1 Mwt HCl
- $1 \text{ Mwt of NaOH} \equiv 1 \text{ eqwt HCL}$
- 1 \approx 40 gm of NaOH \equiv 1 liter of 1*N* HCl
- $40/1000 \text{ gm NaOH} \equiv 1 \text{ml of } 1 \text{NHCl}$
- 0.04 gm of NaOH ≡ 1ml of 1NHCl of total alkalinity calculated as NaOH(chemical factor)

b) From reaction of 2HCl with Na₂CO₃ 2Mwt of HCl \equiv 1Mwt of BaCO₃ \equiv 1Mwt Na₂CO₃ 1Mwt Na₂CO₃ \equiv 2Mwt of HCl 1Mwt Na₂CO₃ \equiv 2 eqwt of HCl $\frac{1}{2}$ Mwt Na₂CO₃ \equiv 1 eqwt of HCl $106/2 \text{ gm Na}_2\text{CO}_3 \equiv 1 \text{ liter of } 1 \text{ NHCL}$ 53 gm Na₂CO₃ \equiv 1liter of 1*N* HCL $53/1000 \text{ gm Na}_2\text{CO}_3 \equiv 1\text{ml of } 1\text{NHCL}$ $0.053 \text{ gm Na}_2\text{CO}_3 \equiv 1 \text{ml of } 1 \text{NHCL}$ (chemical factor)

• Calculations :

V₁ is the of HCl consumed in the 1st titration V₂ is the of HCl consumed in the 2nd titration $V_1+V_2=V_3$ total HCl consumed. correct the V₃ according to this equation: $V \times N = V' \times N'$ Corrected V'₃ x 0.04= gm wt. of total alkali 10 gm ? 100Then the % w/v of total alkali

Calculation

Corrected V'₂ x 0.053= gm wt. of Na₂CO₃

gm 10 ? 100

Then the % w/v of Na₂CO₃ in the unknown

