
C++

Dr. Fouad A. Yaseen
Electronics & Communication

Department

Arrays in C++

Lecture # 10
1

Arrays

2

String is a collection of characters. There are two types of strings commonly used in C++

programming language:

❑ Strings that are objects of string class (The Standard C++ Library string class)

❑ C-strings (C-style Strings)

C-strings

In C programming, the collection of characters is stored in the form of arrays. This is also

supported in C++ programming. Hence it's called C-strings.

C-strings are arrays of type char terminated with null character, that is, \0 (ASCII value of null

character is 0).

Arrays

3

Arrays are used to store multiple values in a single variable, instead of declaring separate

variables for each value.

To declare an array, define the variable type, specify the name of the array followed by square

brackets and specify the number of elements it should store:

string cars[4];

We have now declared a variable that holds an array of four strings. To insert values

to it, we can use an array literal - place the values in a comma-separated list, inside

curly braces:

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

Arrays

4

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

Access the Elements of an Array. You access an array element by referring to the index

number. This statement accesses the value of the first element in cars:

To create an array of three integers, you could write:

int myNum[3] = {10, 20, 30};

Arrays

5

Example:

Suppose a class has 30 students, and we need to store the grades of all of them.
Instead of creating 30 separate variables, we can simply create an array:

double grade[30];
Here, grade is an array that can hold a maximum of 30 elements of double type.

In C++, the size and type of arrays cannot be changed after its declaration.

Arrays

6

Arrays

7

Arrays

8

Few Things to Remember:

❖ The array indices start with 0. Meaning x[0] is the first element stored at index 0.

❖ If the size of an array is n, the last element is stored at index (n-1). In this example, x[5] is the last

element.

❖ Elements of an array have consecutive addresses. For example, suppose the starting address of x[0]

is 2120d. Then, the address of the next element x[1] will be 2124d, the address of x[2] will be 2128d

and so on.

Here, the size of each element is increased by 4. This is because the size of int is 4 bytes.

Arrays

9

Arrays

10

Arrays

11

Example: Displaying Array Elements

#include <iostream>

using namespace std;

int main() {

int numbers[5] = {7, 5, 6, 12, 35};

cout << "The numbers are: ";

// Printing array elements, using range based for loop

for (const int &n : numbers) {

cout << n << " ";

}

cout << “ \nThe numbers are: ";

// Printing array elements, using traditional for loop

for (int i = 0; i < 5; ++i) {

cout << numbers[i] << " ";

}

return 0;

}

The numbers are: 7 5 6 12 35

The numbers are: 7 5 6 12 35

Arrays

12

Example: Take Inputs from User and Store Them in an Array

#include <iostream>

using namespace std;

int main() {

int numbers[5];

cout << "Enter 5 numbers: " << endl;

// store input from user to array

for (int i = 0; i < 5; ++i) {

cin >> numbers[i];

}

cout << "The numbers are: ";

// print array elements

for (int n = 0; n < 5; ++n) {

cout << numbers[n] << " ";

}

return 0;

}

Enter 5 numbers:

11

12

13

14

15

The numbers are: 11 12 13 14 15

Arrays

13

Example: Display Sum and Average of Array Elements Using for Loop

#include <iostream>

using namespace std;

int main() {

double numbers[] = {7, 5, 6, 12, 35, 27}; // initialize an array without specifying size

double sum = 0;

double count = 0;

double average;

cout << "The numbers are: ";

// print array elements , & use of range-based for loop

for (const double &n : numbers) {

cout << n << " ";

sum += n; // calculate the sum, & count the no. of array elements

++count;

}

cout << "\nTheir Sum = " << sum << endl; // print the sum

average = sum / count; // find the average

cout << "Their Average = " << average << endl;

return 0;

}

The numbers are: 7 5 6 12 35 27

Their Sum = 92

Their Average = 15.3333

End of
Lecture # 10

14

