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4- If A is 4x6 matrix, proof that columns A form lincarly dependent set

S-1f A is Sx3 matrix , Proof that columns of A form linearly dependent

sel.

Linear transformation

Definition :

Let V and W be vector sp
function L:V—— W
assigning a unique vector L(x) in W to each X

aces. A linear transformation L of VintoWisa

in V such that .

a- L(x+y)=L&+Ly)- forevery x and y in V
b- L(ex) = cL(X) , for every x in V and every scalar ¢

Not: _
If V=W the linear transformation
L:V—-> W isalso called a linear operator on V.

Example : LetL: RP—— R*be defined by
L(x,y,2)=(X;¥)

To verify that L is linear transformation we let
X=(X|,Ylozl) and Yz(xz,)’z,zz)

Than L( x+y)=L{(x1, ¥ L Z) + (X2, ¥2> 7))
=L [ %% « Yo, 2+27) = (X Hx2, yity2)

= (x, y1) + (X2, ¥2) =L+ L (¥)
Also ifcisa real number .
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Then
1/ L(cx)=L(cx|,cy,,cz])=(cx|,cy.)=c(x,,yl)
i = ¢ L{X)
r, Example :~ LetL: R*— > R’ defined by

e
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L(x,y,z)=(x+1,2y,z). To determine whether L i
transformation ornot .
we let X=(x,,y,,2z) and Y=(%;,Y2,2)
Than L( X+Y)=L({(xi,y1,21)+(x2,¥2, %))
=L (x+x2, Y11Y2, ARYSY)
=((xtxo) ], 2y rty2)zitz)
On other hand
L(x) + L (y) ==(x,+1 , 2y1,21) Hxat1, 2y2,%2)
=((Xitx2)+2 , 2(yrty2),zit22)

g lincar

Thus L( x +y) # L(x) + L (y) Lisnot linear transformation

Example: LetL: R®—— R’ be defined by

L(x)=rx ,risreal number To determine whether L is linear

transformation or not
we let X=(x1,Y1,%1) ~and y=(Xz,y7_,Zz)
Than L( X+Y)=L({(xi,y1,2z)*(x2,¥2,%))
=L (x1+Xg, yrty2, 21t 72)
=(r(x1+%2) ,H{y1ty2).1(z1+22))
=(r X, ,ry 1,0z ) 1X2 Y2, 122)

=L(x) +rL(Y) Lis linear transformation

Example : Let L: R>— — R’ be defined by
1 0

L (x) =0 | (x} L is linear transformation since
' y ¥y -
|
Xz(x'} . Y =(x2] Than L( x +y) =L(£xl +x2)) -
32 V) Yty

0 10

Y | Y2

1
L)+ L) =10
| =1 -1

Example: V= C[0,1] set of all real —valued function
continuous function is vector space
let W=R and L:V — W is

-L(f) =II f(x)dx , Lis linear transformation__Ch?
0
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Theorem :

Let L:V—o> W be lincar trans formation then
Lic; X 13Kz y verrees re X, )= LXK )T o 010, OF NETTRSS +c,(X,)

For any vectors X My ;v ms i X and scalars €1, €2 +revee s

Proof: _
L(eiX HeaKy s voeeeee +e, X, )= Len Xt L(caXp ) vevneee +L(c,X,)
= oy LKy W €L(Xa )y oeee Ac, LX)

Theorem : _
Let L:V—— W be linear trans formation then

(i) L(Ov) = 0w

(HLE-Y) =L (X) - L (N for XY in ¥
Proof :- : |
(i) We have Ov=0v -+ v, so L(Ov +0v)

L(0v) + L(0v) =L (V) if
We subtract L(0v) from both sides we obtain L(Ov) = 0w )
(HLX-Y) = L(X+(-Y))=L( X)+L(-Y)

= L(X) 1Y)
Theorem : )
Let L:V— W be linear transformation of an n-dimensional vector
space V into a vector space W. Also let S== {Xj, X2, --ovoe . tbe a

basis for V . if X is any vector in V then L(X) is completely determined by
LXK LK s e LX)}

Proof :-

Since X isin V, we can write X=X +CaXa s coerees 45, X,
Where €y, €2, «+voee , ¢, arereal number

Then

L(C|X| +C2X2 PO +c " X n ): L(C'| Xl )+ L(C2X2 ) ------- +L(C " X '; )
= L(X] )"‘ CzL(X')_ ), ....... -+ & a L(X n)

Exercises :
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Q1) Is L linear transformation where L (|y|)=| »

S I
t

©o M2
Q2) Let L: R”* —— R* linear transformation and L(L} )ZL 3]

And L(m)xu What is L(EJ) ? What is L(m) ?

Q3)Let P, —— P, linear transformation and L(1)=1,
L(t=t?, L(t*)=t+t
Find Lt -5t+3) , L(at?+bt +c)

& |

J

k|

The Kernel and Rangé of linear transformation:

" Definition :A Linear trans formation L:V > W is said to be
one- to -one if for all Xy, X3 inV.X;# X, implies L(X,) # L(X3) .
An equivalent statement is that L is one —to-one if for all X, Xpin V, L(X))
= L(Xz) 1mplles that X = Xz .

LU UUALY,

Example :
Let L :R®*—> R® be defined by
L(va) = (X+y9 X'Y)
t¢ determine whether L is one -one , we let
X =(%,y1) and X;=(%2,¥2)
then if L(x;) =L(x2)
X1 + Vis=Xg AR Y2

' Xi=¥Y1=%X2-Y2
adding these equation , we obtain 2x; =2X; 0r X; = X»
which implies that y; =y, Hence x| = x; and L is one —to -one.

RANA W

Example :Let L ‘R®_—R? be the linear transformation defined by
L(x,y,z)=(x,Y)
Since (1,3,3) # (1,3,-2) but

) \
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L(1,33)=L(1,3,-2 y=(13)
We conclude that L is not one-to-one .

Definition :
LetL:V——s W A linear transformation .The kernel of L denoted by
ker (L) . is the subset of V consisting of all vectors X such L(X)=0

Ker L= { XEV / L(X) =0} .

Example :
Let L:-R*— s R? definedby L(x,y,z)=(x,¥)

The vector ( 0,0,2 )isinkerL, since L(0,0,2) = ( 0,0) -
However the vector ( 2,-3,9) is not ker L., since
L(2,-3,9)=(2,-3) to find kerL,we must determine all X in R’
So that L(x) = 0 that,
However L(x) = (x1,X2) thus (x;,x2= (0,0) S0 x= 0, X= 0
and x; can be any real number . it is clear that
ker L={(0,0,r) ,r is real number}
Consists of the Z-axis in x,y,z three— dimensional space R’

Example:

Let L:R*—— R’ be defined by

Lxy)=(xty,xy).

Then ker L Consists of of all vectors x in R’ such that
L(x)=0 thus we must solve the linear system

xty =0

x-y =0

LLLLULYL LY Y Y Y Y Y

___,_..__._.__..-_._._____.—._____.__

E for x and y . the only solutionis x =0 SokerL={ 0 }
- Example:

T Let L:R'—— R’ be defined by
- N

- (X5Y5Z= zZ+ W
e,

Then kerL ={ x in RZL(x)=0}  kerL Consists of of all vectors in the
r

s
form where r,s any real numbers.
S
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Theorem:1f L:V —— W is linear trans formation . then Ker L, is a subs

of V.

Proof :-
First . observe that Ker L is not an empty set since Ov is in ker L..
Also . let x and y be in Ker L . Then since L is linear transformation .

L(XW)=L(X)+L(y)=0w+0w:0w So xty is in Kc?rL .
Also , if ¢ is a scalar . Then since L is linear transformation

L(cx) = ¢ L(x) = cOw = 0w,So cx is inKerL .
hence Ker L is subspace of V

Example :
LetL R2— > R? bedefined by L(X,Y)= (X+Y, X-Y)
Then Ker L ={0},dim(Kerl)=0. '

Example :

Let L:R*—> R? defined by L(x,y,2)=(X.¥)

Ker L= { XE R?/L(X)=0} ={(0,0,r): r€ R b . dim(KerL)=1

Example:
Let L:R* » R? be defined by
| 0
L(x,y,Z,W) = {Hy ] _The basis for KerL is | and 0 thus
Z+Ww 0 |

0 -1
dim(KerL)=2.

Theorem:If [:V —— W is linear transformation . then L(X) is one —one if
and only if Ker L={0,}.

Proof :-
Let Xe Ker L then L(X)=0, alsoL(0,)=0, Thus L(X)=L(0,)

Since L(X) is one —one , hence X=0, Then Ker L={0, }

AL Y Y Y Y Y Y Y
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Conversely, suppose that Ker L={0, },assume that L(x) = [(x2) and .
X;.Xe Vthen L(x))- L(x2)=0, so L(x-%2) =0, Then X;-X2€ Ker L

thus x;-x» =0, x;=x,  then L(X)isone-onc .

Definition :
LetL:V—> W A linear transformation . The range of L denoted by

rangl . is the set of all vectors in W that an images under L of vectors in
AY%

Thus a vector Y is in rangel. if we can find some vectors X in V such that
L(X)=Y If rangL=W ,then L is onto.

Theorem:1f L:V—— W is linear transformation . then rangel. isa ’
subspace of W .

Proof :-

First . observe that rangeL is not an empty set since 0, isin rangeL .

Also . let Y, and Y, be in rangeL .then Y= L(X)) ,Y,= L(Xy) -and Y,
Then since L is linear transformation .

Y, +Y, =L(X)+LXy)= LX+X) So Y, + Y, is in rangel. .
Also , if ¢ is a scalar and Xe V . Then since L is linear transformation

cY =c L(X)=L(cX) ,s0 cYe rangeL . hence rangeL is subspace of V.

- Example :Let LR*—— R* defined by L(x,y,z)=(x,y)isL onto?

Choose any vector (X,y ) in R? ,since L(x,y,z)=(x,Y)
However ( X,y ,Z) in R®

So that L(x) is onto. And dim(rangeL)=2

Example :Let L:R*— R’ defined by

L] X
2| x, | is L onto?
3

- —— i ——— — —— =3
— e — — ————— ———— — —
——— i — i ——— — — o — T —
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Thus a solution exists only for y;-¥.-Y =0 and so L is not onto .
To find a basis for the range L

%) 1 0 1}|x X, X5
L{{x,)=|1 1 2|{x = | x, +X, T2
Xy 2 1 3)|x 2, + Xy + 3%,
1 0 l
= X, |1 FX, | X2 eeeneenen *
L \ 0 0
Since y,={1| =L{{0}| » ¥.=|1| “H||! , ¥,=|2|7L |0
2 0 | 0 !

Y,Y,, Y3 € range L. from the last equation (*) it follows that
{y,,¥.»Y, } spansrang L

Now {y,.y,} 18 Jinearly independent while  y,=¥. T2 thus
y,.y, form abasis for range I, dim( rang L)=2

to find dim(KerL) ,we wish to findall xin R’ such that L(x)=0

—— —

we find x,=-%; and X, =-X; thus
—-r -1

Kerl. =4 -rl,rel A basis for KerL is| -1 ,L is not one-one and
r R

dim(KerL)=1.
Theorem: [fL:V— W is linear transformation, then

dim (ker L) + dim(rang L)=dim V .......... (1)

AR WA I I I B0 B0, 5. D= 5. 5 Sh Sh &

proof :-Let n=dim V and k=dim(ker L) if k =n, then kerL=V
which implies that L(x) =0 foreveryx in V .

hence range L={ 0 }

dim (rang L) =0, and the conclusion holds .

—_-__-—_._-_-.-—...-_..—_.-._._.._-——.—_..—._.—._._..-._._
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] suppose that 1 <k <In . we shall prove that dim(rang L)=nk
Let { Xy, Xpervono , X, ) beabasis for ker L .By theorem (if S isa lincar
independent set of vectors in finite . dimensional vector space V . then there
] 1s a basis T for V , which contains S] .

we can extend this basis to a basis

S= ‘l Xy 1y Xyswios s 5 Wk 5 Nlwls weses i Xn} for V.
. we now prove that the set T={ L(Xy+1) , L(Xs2)seee-+- . L(x,)} is a basis for
i range L , which will prove that (1) holds .
b | First we show that T spans rang L .

Let y be any vector in rang L .
Then y =L(x) for some x inV.since Sisa basis for V , we can write

X=cxp+eXptonnnnnn. +c,x, , where ¢, €y, ..., Co are real number then

y = L(x)
:L(Clxl Ll > T P b o C|\X]\+Ck+1xk+;+...‘....+ Cﬂxn)
= C[L(X|) + CQL(X'_,;)+ ...... + CkL(Xk) F Ck+iL(X-k+l) + o+ CnL(Xn)
= G bl K } F onsemm Gl (%) ) :
because X, , X2, ceevernnn. , xcare in ker L .Hence T spans rangel. .

Now we show that T is linear lmearly mdependent
suppose that

[ [ W O W BESS W Ll W ol NERY ) SR I S

C L+l L. ( X k+1 )+ C'k+2L (Xk+2)+ ...... =+ Gy L(Xn): Ow . (2)
LC ket X gy T CraaX ka2 ™ voennrenn Xy )=0,. . )
Hence fhe VECtOr € psiX it T CripXpe2 T ovnnnnnnnn + 6% iIsinkerl. ,
and we can write it as a linear combination of the vectors in the basis for ker
| .
C et 1 X ket + CpaoR ez Trsssses + EeXa = dlxl + d2X2 L o dkx_k
where d;,dy, ..oonn , dy are a real numbers . then
dix; + dyxp, + ...t diXg = CrpiX ket =C gt2X k42 =ov oo - CpX, =0 5
ll since S is linearly independent m we conclude that
d1:d2: ....... :dk:CkH: ........ = Cp=

referring back to Equation (2) , we find that this means that T is linearly
independent and is a basis for rang L . if k =0 , the ker L has no basis , we
Tes {3y, Hy s oo , X, } be a basis for V.

Corollary;: If L:V — W is linear transformation, and dim V=dimW
(a)if L is one —one then it is onto

_———T ——d e
wh
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(b)if L is onto then L is one —one .
proof: if L is one —one then
KerL=0 ,then dim Ker[.=0 .From equation (1)
dim(rangel.) =dimV
but dim V= dimW
. dim(rangell) = dimW
then  rangl. =W the L isonto .

If L is onto then rangL. =W and dim(rangeL) = dimW
but dim V= dimW
hence dim(rangeL) =dimV
From equation (1)

dim KerL=0 thus KerLL.=0 then L is one —one.

Exercises : ~

Q1) LetL: R2_ 5 R linear transformation .
Defined by L(x , y)=(x, x +¥,¥)

a-Find KerL .

b-Is L one-to —one ? Is L onto ?

Q2) LetL: R*— 5 R* linear transformation
Defined by L(x, y, ZzW)F(xty, 2+ W, X +z7)
a-Find abasis for Ker L.

b- Find a basis for range L .

Q3)Let P,— P, linear  transformation Defined by
L(at? +bt+c)=(ate)t’® (bto)t. .

a-lst-t-1 inKerL , ist’+t-1 inKerL?

b-Ts2t2-t inrtange L, ist’-t+2 inrangeL?

Find a basis for Ker L, a basis for range L.

) et gl e et — — Lo — — fene — — et~ Lo~

Q4)Let L:V— W be linear transformation . If
5 20, CTR— , X }spans V. show that { L(X, ), L(X3), ....L(X )}

Spans range L .

- — |

The matrix of linear transformation
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Example : Let L: R®*—— R’ be defined by
X+ y
X i . ' -
L L W - Xy L. is linear transformation since
V a

2x+3y

x) . . s [x | 0

If L\] is any vector in R’ then("}ﬁ x{ } +y{ } so that
Y, y 0 l

L(X) ZL(X[:J +>{ﬂ)

- 1 l
:XL(L])] )+yL([?i\) =x|1|+y[-1]|=

!
1
2 3 2 3

Coordinate vectors: _ _
Let L:V——> W be n-dimensional vector space V with basis

S= {Xi, X2, e (X )it X=a X taXo T ta, X

Is any vector in V then the vector

]

a, ‘
[X]s= - n R" is called the coordinate vector of X with

Lan |

respect to the basis S .The components of [X] called the coordinates of X

with respect to S

Example : Let S={ X1 . X2, X} be "basis for R’ where

?

l 0 1
Xq= | =1 , Xg =1 X,=|-1
0 1 I

|
If X=|2| thento find [X] ;,we must find ¢,,¢,,c, such that

3

61
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‘ Lo 1 el [
2|= ¢ X;tep Xy e, X, | thus - 1 =K )F 2\
3 | 0 1 ¥liel 132]
The solution is ¢1=2,¢=3 ,c¢,=-1
"2
Then [X], =13
=~ |
Example : Let S= {X; ,X 2, ...onne ,X }bea basis be n-dimensional

n

vector space V then since

X=1X, H0X 5+ ... +0X %] =E,

Whete (1E.E, 0o E,} 2 basis for R”

Example : Let S= {t,1 } bea basis for P, if P(t)=5t-2
Then

oL =)

If T= {t+1,t-1 } bea basis for P,

Then 5t-2= %(t +1) -{-%(t-l)

|

|

Theorem : Let L:V —> W be n-dimensional vector space V into an m-
Jdimensional vector space w(n#0 , m#0 )and let S= {X, X2, ..ccvn. ,X )
VAT } be bases for Vand W, respectively . then the
mxn matrix A whose ] th column is the coordinate vector [Xj], of L(X;)
with respect to T is associated with L and has the following property :

Which implies that [P(t) ], = [

[ B

____—.————-—--——-———._-—.—__-——__.___.—.—__———-_-—-..——.—...-___..——__—..—-—.-
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Y= 1(X) for some X inVithen|Y | AlX where [X |, and [Y |

are the coordinate vectors of X and Y with respect to the respective bases S
and T Moreover . A i1s unique

Example: let L: R'—— R’ be defined by | {‘ o) ‘1' ‘ll
| - £

] r J y { ' ! ; |
Let S = || \1\‘\‘ and 1 { Y|.Y) } be a bases for R and R
respectively , where

1 0 0 l 0
Xi={o], X,=|11 , Xy = 0] andY, = L)l and Y, L\
0] 0 l '

we now find the matrix A associated with L :
we have

LX) = 1+0] 1] Y.+ 0Ys 50 [LOX)] 1 = |
A l).\(l'il}};\_()}—l L+ 0Y5 so [L(Xy)]q 0 )

L(X,) = 0+1] o1y, +1v s0 [L(X )‘l":[r
(X l—Uj ‘ | 2 2)11 | )

0
llcngc “

1 1 0
A=
0o 1 =1
X

; X+
Example : let L: R®—— R*be defined by L(| y|)= L y\

-~

4

Let S = { X1, X2,Xs } and T ={ Y,,Y, } be a bases for R*and R’
respectively , wh_crc

| 0 |
1 -1
X, ={0], Xa=|1{ » X3=|l ,Yﬁ[z}and Yz{l} T'hen
| l i

L(X)) =[_I 1]: 0Y,-1Y, so  [L(X)]r= E)l]

f— —-—..———_—-_————-—_—————_-_n———_.—————_—-———-—_———-———-———-—-——-—--—
———— ——
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) =) 2 1
HK2) :L)}: 'I‘Yl =Yy so  [L(Xy)]r=| 1 ;
o 3]

Lxo= = 2v- 2, 50 ol |
3 0 3 | 3 12 ° 1B i‘_

= . . . » . { -I. ; 7
Hence the matrix A associated withLis A ‘—“t | ,12 ‘IJ
p— T -

—

0 4 3
o [LUX))] -r—{_l 2 %][X]_\. ........... (*)
! - 7
to illustrate this equation ,let X=|6 Then L(X)=[31
3
! 1 0 1
6{=¢|0| +cy1| +c,|1|then ¢;=3,¢,=2,¢,=4
3 1 0 I
-3
now [X ],=| 2

0

then from .(*) [L(X)] T:[—i )

}[X Iy {_

wl: uIE
| I |

wlN |-
|
L“‘l-h (1)

101! 11] -1 _ 7
ot 1005151
Definition : The matrix A of previous theorem is called the matrix of L
with respect to the bases S and T .

X X

. 111
Example: let L: R"—— R’ be defined by L(| y )=L R 31\ y
Z Z

Let S = { X,X5,X3 } and T = { Y},Y; } be the natural bases for R, R?
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a
1]
3
(@]
(@)
£5
<
@
el

[
J|:1Y' +1Y,; so  [L(X)]r= b

e
-
o T =
[ SR
|
B

0
Loy 3 ||l o weons- N
0
111 0 | |
: L(X3) = L 5 3}{0 =1Y, H3Y, so [L(XB)]T:L}
1
Then

Now ifS={ X, XoX;}and T={Y,Ys} beabases for R and R® -
respectively , where

1 0 [ | o
¥.=lol, %=l1{ . X3=\1 ,Y.:H and Y2={]j Then

1 I :

, 3 10
fhenA—\:_] ; 1}

Example :LetL : Pi——P; be defined by L (P(t))= tp(t) .

a) letS={1t,]1 } and T={ tz, t , 1 } be ordered bases for Pyand P>
respectively . find the matrix A associated with L . '
b) If P(t)= 3t-2 ,compute L (P(t)) using the matrix obtained in (a )
Solution:

(S | v— N w— D — L — oy | / ~ & ' L | % L

|
First L(t) = tt= 2= LEH0O+0(1), o [LH]+= |0
0

E——— e _|
(@)
wn

— ———— e —— i — —— — o o S S N S S Sy
— e — — — ——— ——————— —
PR —— =
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I ¢

Niale Y Lt |

.

3 —

[ (R . W G N W G

———————— i —

td

J L

L(1)=t.1=t, s0 [L(D]r=|0
J1L 0
Hence the matrix of L is A={0 |
0 0

(BL(P(1)) = t(P(t))=t( 3t -2)=3 t*-2¢ .
However We can.find L(p(t)using the matrix A as follows since

1 0 3 3
L) +=AIX ],= |0 1 [ 2]= P
0 ol- 0

Hence L(P(t)) = 3 -2t +0(1)= 3 t*-2t

Example :Let L : P,——P, be defined by L (P(t))= tp(t) .

¢) let S={t,1}and T={t, t-1,t+ 1 } be ordered bases for P and P,

respectively . find the matrix A associated with L .

d) If P(t)= 3t-2 ,compute L (P(t)) using the matrix obtained in (a )

Solution:
|

L(t)=ti= = HEH0E1)H0tH), o [L{H)]+= |0
0

e |— —

L(1) = L1021 2 (+1), o [L(D))r=

=

Then the matrix of L is A=| |
0

<
(&%)

r|—
| |
l (%)
[§ )
) |
Il
| |

w3 |—

L(P(t) =3 -1 (t-1)-1 (t+1)=3 -2t

i — — — — —————— — o — —— —— ——
e —————— ———— ———— e ————— —— —— — — f— —— — —
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Exercises:
I- Let L: R —— R’ be defined by
. x=2y 1 17 fo] [ !
L (‘} =12x+y LctS_{[_J,L]} and T={| |, 1],|-] !
X+y of 1]}

- a)find the matrix A with respect to Sand T .

1 ;
b)L(L}),usmg the matrix obtained in (a)

(42
2-let L: R””——» R? be defined by L((X]F l:} " y}
1 =Y

LetS= {[_‘I},B‘J} and T = { {12],[—21] } be a bases for R*find the matrix A

with respectto Sand T.

3-LetL : P,—— P, bedefined by

L (at™+bt+ ¢)= (a+2c) tH(b -c)t+(a-c).

let S={t%t, 1} and T={ -1, t-1 } be ordered bases for P, .

(a) find the matrix A L with respectto Sand T .

(b)If P(1)=2t*-3t+1 compute L(P(t)),using the matrix obtained in (a)
Math.dep. LINEAR Algebra 2014
College of science first course

Q1)a-State and Prove Cauchy-Schwrz Inequality .
" b-Show that if Z orthogonal to X and Y then Z orthogonal to
rX+sY ,wherer, s are scalars .

Q1)a-State and ProveTriangle Inequality

b-Consider of the vectors X=(-3,0,0,-3), Y=(0,5,0,5) and Z=(-1,0,0,-1)
Which of X and Y are orthogonal and in the same direction.
Q1)a-Prove the parallelogram law. | + Y +[x - v|* = 2| + 2|

b-which of the vectors X=(4,2,6,-8) ,Y =(-2,3,-1,-1) ,Z =(-2,-1,-3,4 )
‘W=(1,0,0,2) are orthogonal ,in same direction ,parallel.

Q1)a- Prove the parallelogram law.|.X + Y||2 +X - Y| = 2| x| +2J|
Prove |X xY|=|x||t]sin®

—————— — T —— T —— =
—— ———— —— T — —— — ———— —— —— — e — M M i S
— ——
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QlYa-Show that Jx x 7|2 +(x12 =X
b-Prove the Jacobi' identity :(XxY)xZ+(¥xZ)x X +(Zx Xyxy =0

(F h L".‘ | - -~
Q2)Let W —'1 Z | /_J!.u = 2c+1p W is subset of vector space V of all
(l
- J

2x3 matrices under usual operations of matrices addition and scalar

multiplication is W is subspace of V.

Q2)a-Let W ={(a,b,c),b = 2q+1} subset of vector space R'is W is subspace?
b-Suppose that S={X;,X,, X,} isa linearly independent set of vector in
vector space V prove that T={Y .Y ,,Y .} is also linearly independent
where Y =X +X+X,,Y , =Xo+X,,Y ;=X

QIIES = T X 3K 55 o vors , X, jisa basis for a vector space V prove

every vector in V can be written in one and only one way as a linear

combination of the vector in S . :
Q2Prove if S={X;, X2, ccovren ,X } abasis for avector space Vand T

= (Y,.Y,,Y,...Y,} is linearly independent set of vectors in V then r<n.
Q3)Show that S={X; , X2, ...conr ,X }and T={Y,,Y,.,Y;.=.Y, } are
bases for a vector space V then r=n.

Q3)

1- {0} is linearly ------- and dim({0})=--——-- ;

2- The dimension of R*=---- and dim( P, )=-—-—-- 2

3-The homogeneous system AX=0 of linear equation has a nontrivial
solution if and only if rank A ------ :

4-If the dimension of V is finite number V is called------------ vector space.
5-The parallelogram law is----=---------=— .

6-The nxn matrix is nonsingular if and only if rank A--------

7_1f A is nxn matrix then rank A =n if and only if--------- :

8-The homogeneous system AX=0 of linear equation has a nontrivial
solution if and only if rank A --------- ;

9-IfA is 3x4 . matrix the maximum value of rank A ig---------- .

10-If A is 4x6 matrix, the columns A form linearly ------------ set.

Q4)prove if V be n- dimensional vector space and S={X; , X2, ...., X}

et of n vectorsin V then
a)If Sis linearly independent then it is basis for V.




e ot B RS SRS ML AV Ay AR, &

v ) — - —

jo—
e s

b) If _S is spans then it is basis for V .
Q4)Find a basis for the solution space of homogeneous system

1 2 0
AX=0 where A=|0 1 3|What is the dimension ?
2 1 3

Q4)Find a basis for the solution space of homogeneous system

1 2 0
AX=0 where A=|1 1 —3|What is the dimension.
1 3 3
1 =2 -1
Q4)Find therank of A where A=2 -1 3
7 -8 3

Let L:R’—— R’ defined by

%
L= 1= 1 x, | is L onto?

X I 0
]
x ]

)
Gy b

3 X3

Q2 )ProvelfL:V —— W is linear transformation, then

dim (ker L) + dim(rang L)= dim V

Q3)fL:V. — W is linear transformation, and dim V= dimW
(c) if L-is one —one then it is onto
(d)if L is onto then L is one —one .

Q4)Let L: R*_— R’ linear transformation

Defined by L(x, ¥, 2)=(x +y,z+ W, X +2)

a-Find a basis for Ker L .

b- Find a basis for range L .

Q4)Let L: R2—— R’ linear transformation

Defined by L(x, y)=(x, X T, ¥)

a-Find KerL.

b-Is L one-to —one ? s L onto ?

Ql |
2-Every group of order<6 is abelian?

____._——-—-—-——-——--———-—————- ————————— —— — T ——————— — T —— o f— ———
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3-Let H,,H, be a subgroup of G then H;UH, is a subgroup?

4-1f H is a subgroup of G then G\H is a group?

Q3:1-Is the group of order (56) simple?

2-Is the group of order 45 abelian?

Q4:Define the following

Char of ring R, cyclic group, normal subgroup, prime ideal, semiprime ideal,
maximal ideal, 1.D, P.LD, nilpotent clement, idempotent element, Boolean
ring

Qs:

3-show thatZ,={—1,1}?

4- Show that for any group G we have G \CentG=InnG?

5-Let f:G — G’ a group homo, prove that if HAG and onto thenf(H)!lG 7
6-Show that every group of order p is an abelian group (p is prime

number)?

7-Let Gbe a group. Show that if  is normal subgroup of G then G\ is
abehamff [G:G]cH?

12-Show that if {H,} a family of normal subgroup then MH, is a normal
subgroup? |
13-Given H and K SUbgroup of a group G prove that if H and K are*normal
subgroup then HK is normal in G?

14-Show  that if H is subgroup of a group G, then HAG

iff (aH)(bH) = abHforalla, b €G?
15-Let H, Kbe a subgroup of a group G then HUK is a subgroup iff either

HcKor Kcit?
79-Let Hand K be a subgroup of What is meant of an internal direct product

of H and K, show that if G=H®K then G\H=K?

777———_-——____..._.—__._—_.—_—_-——__._—___———._._._.
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24-Show that the only non-trivial homo from Z into Z is the identity?

26-1s (Z,+)=(Q-{0}, .)

30- Let f:G — G" a group home with (" is abelianshow that every subgroup
of G containing kerf normal?

32- Let f:G — G' a group homo which is onto, show that if H and K are
subgroups of G with kerfcHK, then f(HNK) = fU)Nf(K)?

34- Let H,Kbe a subgroup of G then show that if KH is a subgroup of G,
then KH = HK?

43-Let G be a group: Define /nnG, show that c;]m ~ InnG

44-1f Hyand Haare subgroups of a group G. Is Hy U Hza subgroup of G?

“45-Let H; and H, be two subgroups of a group G, show that H; U H, is a

subgroup if and only ififand only if Hy cH, or H,

46-Define a proper subgroup. Show that a group G cannot be the union of
two of its proper subgroups. ‘

Q6: |

1-Exaplain how every field is integral domain and give example to show that

converse is not true. What conditions on integral domain induce field(prove

your answer)? -
2-Show that the only homo from the ring Z into Z are trivial homo or the

identity homo?
3.If 1] are ideal of

between I+] and I or J (inclusion)
A-Let M be an ideal of a commutative ring R with one then M is maximal

ring R show that I+J is an ideal of R ,what is the relation

ideal iff RM is a field?

ORTHONORMEL BASIS INR”
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Definition : Let S={ X . X3000010.v00n X ) be set of vectors in R is called orthogonal if
any two distinct vector in S are orthogonal that is
I X.X =0 fori # |

An orthonormal set of vectors is orthogonal set of unite vectors.

Example : Let X, =(1.0.2), X 1=(-2,0.1)and X,=(0,1,0) then { Xi, X2, Xy}
orthogonal set in R*
Since X|. X:= XQ.X3: XQ.X_\:O

2 . X, s also unite vector then {Y, ,Y 23 X3} orthonorm'\l setin R’
Also Span{ X;, X,,X,} isthesameas Span { Y .,Y,, X5}

The vectors Y =(—

Example: Let S= {E
R"

- S JE_} anatural basis for R" g is orthonormal  set in

Theorem: Let S={X,, X3, ..., X,} be orthogonal setin R" then S is linearly

independent.
Proof: Let

¢y X+ Xat...+¢, X, =0 taking the inner product of both sides with X,
(@ Xytea Xot.. e Xo). X, =0.X, -

!

o (XL X )+ 6 (Xa. X)) o +ea(Xn X)) =0.X,

since X,. X, =0 forl # j then 0=c,(X,.X;)=c,lX

ik

X, #0 then |[X,| #0thus ¢, =0 1<i<n
then S is linearly independent.

Corollary: An orthonormal set in R"then S is linearly independent.
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J . Definition : An orthogonal(orthonormal) basis for a vector space is 2 basis that is an
orthogonal(orthonormal) set.

,

(X
Theorem:GRAM SCHMIDIT PROCESS

] Let W bea non zero subspaces of R" with basis S={Xi, X2, ++» X} then there

- exists an orthonormal basis T={Z, ,Z; s+ Z, ) for W.

-
Proofilet Y ,= X,

Let W=Span{ X1, Xa} ,w,=Span{ Y, X2}
Y,=aY¥ e X,

J— L

J——T

NowY,.Y,=0 ,0=(c; Y, +C2 X2). Y,
Y, #0, Y,.Y, %0
G =05 X, 1,

1.7

: XY,
let c,=1 we obtain ¢, =- 21 thus

1271

X5
Y2:Q1YI+CZ Xo= X3 - r?:—'Y—:)Y]

We have an orthogonal sub set {Y, Y, }of W
Next we look at vector Y

In thesubspace W, of W Spanned by {X1,
Y,.Yy of course W, is also Spanned by { Y,,Y,,X;} then

X2, X4 }which is orthogonal to both

e e B

__—_.-__._._-__._—_.—_._._.____—-—__.._—_-._.____....___.._

Y =Y, +d, Y, ;X then

j —

Letd=1 , Y, .Y, =0, Y;.Y,=0

Y, Y, :(dlYl+d2Y2+X3)'Yl:dI(YI'Y!)+X3'Yl
Yz-Yf(d1Y1+d2Y2+X3)-Yzzdz(Yz.Y2)+X3.Y2

v, #0
Xy, 4 =Xl
Y, A
X. X ¥
Y.—: __)—LY-F 3 ZY
gyt L

r
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At this point we have an orthogonal subset {Y,,Y,, Y} of W
Next we look at vector Y,
In the subspace W |

of W Spanned by (X, X,.X X, Jwhich is orthogonal to

_Y Y5 Y, of course W Jis also Spanned by { Y .Y, Y,,X,} then .
\ r y -

Y, =X,-2 )’ Y b X ol 2y, LA Y,
1y, VY 7

We continue until we have an orthogonal set T*={Y .Y ,.,Y,,...Y , }
be bases for W if we normalized the Y.

u u

then T={Z Z,,.......Z,} an orthonormal basis for W.

The Gram Scchmidt Process for orthonormal basis T={Z,.Z,, ....... A
For W of R” with basis S={X1, X, +.., Xa} '

Stepe 1:letY = X,

Stepe 2:compute Y ,,Y 5,...Y,

r'Yz—-] Y
g

=X - Y,
By formula t) CRY ' BY LY,

The set T"={Y,Y,,Y;,...Y , }is an orthogonal set .

.........

X,}ﬂy_XY .4 })}(

=1

Stepe 3: letZ,= ”}; " then T={Z; ;4 s cvvawss ,Z , }is orthonormal basis for W.

Example: let S={Xi, X2,X;} be a basis for R? where
X, =(1,1,1) , Xo=(-1,0,-1) ,X;=(-1,2,3) use Gram Scchmidt Process to transform to

H 3
orthonormal basis for R

Sol: Stepe 1: letY = X

—— i ————— — i ——————————————— T — — —— —— — —— ——— "
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Stepe 2:compute Y, .Y,

¥ e we g s o o
X (LY, = (LoD %—u.l.l):(—

1+ 4

| 2 I
| _ 3377
\"‘7x .\:)l\-l*_-\';.).j

1 ——

Y, =(-2.0.2
)l-)! )'2.)‘:. 2 = - )

then

T ={Y. . Y.Y . @
Y ,.Y LY, ) an orthogonal basis i R’

, N 12 1
AN AN A
; Y, | |
Z,= b= (e b =
T I

then T={Z,,Z,,Z,}an orthonormal basis for R’

Example: let W be subspace of R* with basis ‘
§={Xy, Xo} where Xi=(1,:2,0,1) , Xa=(-1 .0,0,-1) use Gram Scchmidt Process to

transform to orthonormal basis for R*

Sol: -

Theorem: Let S={ X, X25 -+s X,} be orthonormal basis in R” and X any vector in R”

then X= ) Xit+ep Xot...Fen X where ¢, = X. X, 1<i<n

proof ;

._.—..—_.-——-——-.——-—-——.--——-————-.—--—————_-___...__._
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X= Cy X|+C2 X2+---+Cn Xn

X. X = (C] X]‘{”Cg Xz'*‘..""cn Xn )X,

S XL X (X X)) o (X X,) =X X,

SinCEX,. X; =0

forl #j and (X,.X,)=1 sincforthonormal
then X. X =g¢

EX: let X=(4,3,-1) in example 1, write X as linear combination where
T:{z,,zg,z3}

1T 121 1 1
Zl—( s - ),Z, = le— — -—= Z = -__0_..—-)
/3 3 }3 2 ( 6: 6’ ’_6)’ 3 ( ﬁ: -\/5
X-Z":Ci
Then X=29

X=Cl Z|+CQZE+C32,3

—_—
——
—
——
——— —
——— -
—— — ———— ———————————— T — — - — {
—— " ——— ———— —————————

Theorem: Let W be an m-dimensional subspace in R” with orthonormal basis S={X;

X2, ..., Xy} then every vector X in R” can be written uniquely as

X=Z+Y where Zisin WandY is an orthogonal to every vector in W

proof:

Let Z= (X. X)) X;+ (X.X3) Xo oo H (XX X
And

Y=X-Z

Since Z is linear combination of X;, X5, ..., X, then Z belong to W
We next show that Y is orthogonal to every vector in W .thus let
Z,=c; X;+cp Kot...tem Xy be arbetrary vector in W then .

Y. Z =X~ (XX) Xi- (XX Xa oo = (XXa) X 1L C1 Xibea ot 4em X ]
And

since X;. X, =0 forl # j and (X,.X,)=1 sincforthonormal
then X.X,=¢,

— e — ————————— —— —— ——
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Eigen values And Eigenvectors

AT (T A — T —

Definition: Let A be ann xn matrix. The real number A is is called an

n value of A if there exists a nonzero vector X in R” such that
AX=41X (D)

y nonzero vector X satisfying (1) is called an eigenvectors

\ associated with the Eigen values 4 .

Note: _
=0 always satisfies Equation(1),but we insist that an eigenvector X be a nonzero vector.

-

Example Lif A s identity matrix |7 .then the only eigenvalueis A=1;and every nonzero vector in R"is

an eigenvector of A associated with the eigenvalue 1=1:
X=1X.

0
Example 2: Let A={

AT —
9|=
<o =
A |

. . . 1
that X = [ﬂ is an eigenvector of A associated with the eigenvalue 4 !=5

L LR

. . n ; . 4'1
} is an eigenvector of A associated with the eigenvalue 4 :?

—
(4}
=
>
—
SN |
Il
1
= O
< wl-
L—_._J
=
| S——
Il
|
=

o=

|
So that X2=\: ]

TS RN A

Figure 5.1 shows that X | and AX are parallel, and X, and AX, are paranél also. this illustrates

e fact that if X is an eigenvector of A, then X and AX are parallel.
figure 5.2 we show X and AX for the cases A>1,0<A<1,and 4<0.
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nple 3: let .\V{) 0

| N

0 1

|
F

. | ) '

Then A| |= 0 0}}1 :( =0 ‘

0 |0 1{{0] [O 0]
1 . . ;
So that X, ‘{ J is an eigenvector of A associated with the eigenvalue
- ( . : )

A ,=0.also,

4 O . . .
| X,= [ 1 is an eigenvector of A-associated with the eigenvalue 4,=1
L

' Example 3: points out the fact that although the zero vector, by definition, cannot be an

eigenvector, the number zero can be ei genvalue.

|
|
Example 4: let A=
We wish to find the eigenvalue of A and their associated eigenvectors.

X

Ay

Thus we wish to find all real numbers A4 and all nonzero vectors X={ }satisfying( 1),that is

L x X,
=A e(2)
} -2 4]|x X
‘ Equation (2) becomes
X =4 Xy
P 2%, +4x,=1 X,
or
(A'l)x| - XZZO
2%, H(A-4) x,=0
The homogeneous system of two equations in two unknowns. the homogeneous system in (3)
has nontrivial solution if and only if the determinant of its coefficient matrix is zero: thus it and
only if
A-1 -1
Z A—4 _
This means that (A-1) (A-4)+2=0

o ———— — —
—— —— ———— — —
———— ———
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Or

A152+6=0=( A-3)( 4-2)
hence
A, =2 and A ,=3arethe cigenvalues of A.

To find all eigenvectors of A associated with 4, =2 we form the linear system

AX=2X
LM
-2 4\]x X,
This gives
" st B
22X X, =2X,
Or
(2-1)x,- X, =4
2x,+(2-4) x,=0
Or
X <%5=0

28 =Ky U

Note that we could have obtained this last homogeneous system by merely subslituting A=21n
3)-
All solution to this last system are given by .

X, =X, ,X, =any real number r.

hence all eigenvectors associated with the eigenvalue A =2 are given by

r . B : : :
[ j\,r any nonzero real number. In particular, xLZ[J is an eigenvector associated with 4 =2
’

similarly, for A ,=3 we obtain, from (3)
(3-1)x,-  x,=0
2x,+(3-4)x,=0
Or

2%k, =l
2x,-x, =0
All solution to this last homogeneous system are given by

1
X,==X,, X,=anyreal numberr.
2

hence any eigenvectors associated with the eigenvalue A , =3 are given by

r

= . . .
7 |-r any nonzero real number .in particular X, :L is an eigenvector associated with the
r

eigenvalue 4 ,=3.

L e - —— i ——————————
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Definition: let A= \“-/] be an nxn matrix. the determinant

A-a, —a, - "9
A=\, -4 )=~ A=ty - @)

-a, —Qs e A—Oy,

na

Is called the characteristic polynomial of A. the equation

f(A)=|i1, -4 |=0

is called the characteristic equation of A.
Example 5: let
b 2 =l
A=l1 0 1
4 -4 5

The characteristic polynomial of A is (verify)

I
i‘(A):W}—Ak 1 A=0 1 |=A’-6A°+11A-6
4 & 1-5

Theorem: The eigenvalue of A are the real roots of the characteristic polynomial of A

. Proof:
Let A be an eigenvalue of A with associated eigenvector X. then
AX=A4 X
Which can be rewritten as
AX=(A1,)X
Or
(A 1,-A)X=0 (3)

A homogeneous system of n equations in n unknowns. This system has a nontrivial solution if
and only if the determinant of its coefficient matrix is zero that (/U” .y [zo

Conversely, if A is a real root of the characteristic polynomial of A, then k/Uﬂ -4 ‘:0, so the

homogeneous system (3) has nontrivial solution X. Hence A is the eigenvalue of A
Thus to find the Eigen values of a given matrix A, we must find the real roots of its characteristic

polynomial f(A).
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Example 6: consider the matrix of example 5. the characteristic polynomial is

()= 217-6 17 +11 1 -6
the possible integer roots of f( A)are £ 1, £2, £3 and +6. By substituting these values in f{4).
we find that f(1)=0 so that A=1 is a root of f( A). Hence
(A-1)is a factoy of f( A).
Dividing f( 4) by (4-1), we obtain
flA)=( A-1)( A? -5 A+6)
Factoring 1% -5 A+6, we have
f(A)=(A-D( 2-2) 4-3)
The Eigen value of A are then
A=, 4,22, 1,=3.
* To find the eigenvector X associated with 4 ,=1, we form the system -

(11,- A)X=0,
r—l -2 1 lix
~| | ~f Y 1=
| =% = 1-51]x 0
Or
0 -2 170[x] [0
-1 1 =1{|x|=|0
—4 4 —4\lx LO
[=r]
. -1
A solution is 2 for any real number r. thus X,=| 1 | isaneigenvector of A associated with
; ]
L
A =L
To find an eigenvector X, associated with A ,=2, we form the system
(21,-A)X=0 '
2-1 -2 L |Ix) |0 1o-2 177 [0
Thatis, | =1 2 —1||%|7 0| then -1 2 =1||x|70]
4 4 2-=5||x 0 —4 4 =3||x 0
T -2
A solution is | £ | forany real number r. thus X ,=| 1 | isan eigenvector of A associated with
£ 4

Ty T2
To find an eigenvectoi' X, associated with A =3, we form the system
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(31,-A)X=0,

-

for any real number r. thus X,=| | —\ is an eigenvector of A

And find that a solution is
4 ]

~ =~ J:-.J

associated with 4 ,=3.

Of course, the characteristic of a given matrix may have imaginary root, and i ma
roots, however, for the matrices that we are most intersection, symmetric matrices, all the roots

of the characteristic polynomial are real.

y even no real

Example 7: let A=[ 0] d then the characteristic polynomial of A is
flA)y=A7%+1,

which has no real roots, thus A has no eigenvalues.

Problems: Find the eigenvaluesand eigenvectors of

2 2 3

L 1] 1 -2
e - PO B L
! 0 -1 2|

e e o —— ——— ———— i — — — — — .
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Similar Matrices ineul atrix
e - . - . - 2 2 | 'Y if [ S U r m -
Delmmon: A matrix B is said to be similar to a matrix A it there is a nonsingula

such that B=P'AP.

b
Example: let A—{ } Let
-2 4

el
o I

Thus B is similar to A.

and

The properties for similarity:

1. Aissimilarto A.
2.if Bissimilar to A, then A is similar to B. E
3. A issimilar to B and B is similar to C, then A is similar to C:

' Proof:?

’ By property 2 we replace the statements “A is similar to B” and “B is similar to A”
By *“ A and B are similar” '

’ Definition: we shall say that the matrix A is diagonalizablc if it is similar to a diagonal matrix.
In this case we also say that A can be diagonalized.

! Example 9: if A and B as in above example, then A diagqnalizable, since it is similar to B.

EXC:

. 1
1-1f Ais eigenvalue of nonsingular matrix A with associated eigenvectors X .show that ri

is eigenvalue of matrix A™' with eigenvectors X .
5 if A ,B are nonsingular matrix show that AB ,BA are similar .
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Theorem: A matrix A is nonsingular iff |A‘ #0.

Corollary :Let S = {X, ,X,..... X } setofnon-Zero vectors in R"and let A be the

matrix whose rows (columns) are the vectors in S . linearly independent iff [A( 0.

Theorem: An nxn matrix A is diagonalizable if and only if it has n linearly independent

eigenvectors. In this case A is similar to a diagonal matrix D, with P~'AP=D,whose diagonal

elements are the eigenvalues of A, while pisa matrix whose columns are n linearly independent
eigenvectors of A.

Proof:Suppose that A is similar to D. then

P'AP=D
So that AP=PD Let
A 0 - 0
S ;
0 . 0 4,

and let X ,, j=1,2,...,n be the " column of p, Note that the j " column of the matrix AP is
AX ,and the " column of PDis 4, X . thus from (6) we have
AX,= 4, X, (7

Since P is nonsingular matrix its columns are linearly independent and so are all zero
then  is eigenvalues of A, '

Conversely , éuppose that 1 ,are eigenvalues corresponding eigenvectors X | are
linearly independent ,let P be matrix its
i column X , . from cor. And th. Then P is non singular , and

AX =4 ;X, then AP=PD andA is diagonalizable.

Example:

1 ,
letA let A={ ) 4} the eigenvalues are A,=2 and A ,=3 the corresponding eigenvectors

I : : .
Xlzliﬂ and X, =[2] are linearly independent. Hence A is diagonalizable, here

~ll andP"=2 =]
P E R

Thus

e e e o ———— i —— e S ———— —— — v
———— —_—— -
- —— -—
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Example : let A=l !
0 1

) — ith 4, and 4, are
The eigenvalues of Aare 4,=1and 4 ,=1. cigenveclors associated with 4, 2

N r
vectors of the form [0]

Where r is any non zero real number. .

: e that A Is not
Since A does not have two linearly independent eigenvectors, we conclud
diagonalizable.

-

. n " = XforXin R"
Corollary: consider the linear transformation L:R " — R" defined by )lc,(X) 1;\( o donly if
then A is diagonalizable with n lincarly independent eigenvectors X3 Xy

l the matrix of L with respect to S={ X, X, yeresiog; o 15 diagonal.

Proof: . | . . ' -
S£ppose that A is diagonalizable. Then by theorem it has n lmearly_mdepepdem el.gelnwictcti);ls“
' X X, geeX,, sWith corresponding eigenvalues i o st g Since n linearly indepen

I "N
vectors in R” form a basis we can conclude that S={ X ,X, yosX |} is abasis for R ow
] L(X )= AX,
=1,X,= OX,+...+0XJ._,+./‘LJX1,+(}X,+,+...+0X”,.
so the coordinate vector [L(Xj )J ,of L{X ;) with respect to Sis

[0]
0
A |« " row (N
0 .
L9 . '
Hence the matrix of L with respect to S is
(A, 0 0
0 A, - 0 2
. A
10 .- 0 4,

Conversely, suppose that there is a basis 8={ X ;X ,...,X , } for R” with respect to which the
matrix of L is diagonal, say of the form (2). Then the coordinate vector of L(X ;) with respect
to Sis(1),s0

e o o o e e
e —— o
e
—
———
—
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LX) =0X,+..40X  + 42 X, +0X , +..40X, =4 X .

Since L(X ) =AX ,we have

Which means that X X5 el X, are eigenvectors of A. since they form a basis for R" They are

mearly independent, and by theorem we conclude that A1 diagonalizable.

Theorem: A matrix A is diagonalizable if all the roots of its characteristic polynomial are real
and distinct.

Proof:
Let A, A,..... A be the distinct cigenvalue of A and let S={ X, X ;500X , } beaset

ofassociated eigenvectors, we wish to show that S is linearly independent. Suppose that Sis a
linearly dependent set of vectors, then theorem ( *) implies that vector X, is linear combination
of the preceding vectors in S ,we can assume that S =X X 50X y_r} IS linearly independent,
for otherwise one of the vectors in S, is a linear combination of the preceding ones, and we can
choose a new set S, and so on, we thus have that S, is linearly independent and that

X, =¢;X e, X, teete, X (1)
Where ¢ ,¢, ,...,¢ ,_, are real numbers, (multip_lying on the left) both sides of equation (1) by A

we obtain
AX =Ale X +e,X,+...+C X )
=¢ AX,tc, AX, +...+c [ AX | (2)

Since A,, 43...., 4

n

are the eigen vaiue of A and X |,X,,...,X | its associated eigenvectors,
we know that A X =4, X, for 21,2004 5 substituting in (2), we have
)_IXI=c|/1!X,+c2AZX2+...+cH}.j_,XH (3

multiplying (1) by 4 ,, we obtain
/IJ,XI=/11ch,-F2,c2X2+...+/11.c/_IXI_, ; 4)
subtracting (4) from (3), we have

0=2 :XJ— /T'jxj

=c, (4 ,- 2 )X e, (1 ,-1 j)X2+...+cJ_i( Aopam A )X

Since S ,is linearly independent, we must have

Cl(l]'ﬂ‘,)‘—'(}, Cz(/lz'/ll):o,..., cj—l(/qu'l ,)EO.
Now
AI"I,'#O’ ;{2-’1]‘;&01'”5-& f_l'/ljiﬂ

(because the 2, are distinct), which implies that
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From (1) we conclude that X =0, which is impossible if X  is an cigenvector. Hence S is

linearly independent, and from theorem (*) it follows that A is diagonalizable.

Ifall‘ toots of characteristic polynomial of A are real and not all distinct, then A may ov may not
be diagonalizable. characteristic polynomial of A can be written as the product of n factors, each
of the form 1 - ; ,» thus the characteristic polynomial can be written as

(A-2)" (A-2,)" ... (2-2,)",
Where 2,, 2,.,..., 4, are the distinct Eigen value of A and k, .k, ...,k ,are integers whosc
sum is n.the integer & is called the multiplicity of 4.

0 0
Example: let A=|0 1|
0 0
The characteristic polynomial of A is
flA)=2 (A-1)*, so the eigenvalue of A are 2 =0, 1,=1,and &;=1, thus A,=lisan
k eigenvalue of multiplicity 2. :
we now consider the eigenvectors associated with the eigenvalues A ,= A ;=1, they are obtained
by solving the linear system (11;-A)X=0:

|
2
1

1 0 —-1}fx 0
; 0 0 -2 [xz =10].
| 0 0 0 Lr} 0
ol
A solution is any vector of the form | » |, where r isany real number, so the dimension of the

0

' solution space of (11, -A)X=0is I.ther do not exist two linearly independent eigenvector. thus A
cannot be diagonalized.

EXC:
A ’ - . 1
|- 1f Ais eigenvalue of nonsingular matrix A with associated eigenvectors X .show that —

is cigenvalue of matrix A™ with eigenvectors X..
7. if A ,B are nonsingular matrix show that AB ,BA are similar .

Example: let

e e e ——— — o e T s T  — — — — — —————
———
———
a———
——
—
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| 0 0 0
1 0 0

| The characteristic polynomial of A is { A=A (A )2 so the eigenvalues of Aare A, 0.

A y=1,and A =1 is eigenvalue of multiplicity 2.
t now we again consider the solution space(I1 ,-A)X=0 , that is of
10 0ffx 0
0 0 0f|x,|=|0].
-1 0 0f|=x, 0

3

0
A solution is any veotor of the form | 7 | for any real numbers r ands .thus we can take as
&
0
eigenvectors X , and X , the vectors X,=|1 and X,=|0
0

Now we look for an eigenvector associated with 4 ,.:O.
we have to solve (01,-A)X=0

0 0 0 1}}x 0
orl 0 =1 0 ||x{=|0f

-1 0 —1f[x 0|

{ 17
A solution is any vector of the form | 0 |for any real number t. thus X,= 0 |is an eigenvector

—1 ; =1

=0. sinceX ,, X, and X,are linearly independent, A can be diagonalzed.

associated with Ay

Thus an nXn matrix may fail to be diagonalizable either because not all the roots of its
characteristic polynomial are real numbers, or it does not have n linearly independent

ei genvectors.

Eigenvalues and eigenvectors satisfy many important properties:

|-If A is an upper(lower) triangular matrix, then the Eigenvalue of A are the elements on the

main diagonal of A. N
2. 1f Aa fixed eigenvalue of A thenthe sct § consisting of all eigenvectors of A associated with

2 as well as the zero vector is a subspace of R” called the Eigenspace associated with 4 .

Problems:

88
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1 2 3
'\,[i 0] ]

N 1.C=10 -1 2]
| e |
L )0 IJI
I 3 5
2-le _ i = i
o A= _|compute A’
1 -3
’ If Zis eigenvalue of A with eigenvector X .Prove At s

eleenve P ;
eigenvalue of A* with same eigenvector X.

| 4- Ais called nilpotentif A*=0,proveif Ais nilpotent then the only eigenvalue of Ais 0..

Symmetric matrix

Definition: a matrix A is calledsymmetric matrix if A=A .

‘5§
, Ex: A= {( F)}s symmetric matrix
! )

Theorem: All the roots of the characteristic poly’nbmial of a symmetric matrix are real numbers.

Corollary: if Alisa symmetric matrix all of whose eigenvalues are distinct, then A is
diagonalizable. '

Proof:
Since A is symmetric, all its eigenvalues are real. From theorem (*) it follows that A can be

diagonalzed.

Theorem : if Aisa symmetric matrix, then eigenvectors that belong to distinct eigenvalues of A

are orthogonal.

Proof:

First, we shall let the reader verify the property that if X and Y are vectors in R ;then
(AX).Y=X.(A" Y) vereeen(HLW)

_,______...._____.__._...._...__._._,._.____._...-.__...-.-.—.———
e ———
_ —— ——— i ——— — — ——
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Now let X - , : . ; . vz . . v
let X and X , be cigenvectors of A associated with the distinet cigenvalues A,and 4, of

A, we then have
AX,=4, X,andAX,=1,X,. |
Now - ‘
AT X)=( 4, X)X, = (A X)X,
=X, (ATX,)=X,. (A X;)

| =X ,(1,X,)= 4, (X X3)
\tv here we have used the fact that A=A .
I'hus

A (X X?)zﬂ- » (X,.X,)
and subtracting, we obtain
0=4, (X,-X,)-4, X X3)
=(A,-4,)X,.X,) ]
Since 4, = A ,, we conclude that X,.X,=0.

0 0 -2
Example:let A= 0 -2 0
-2 0 3

We find that the characteristic polynomial of A is (verify)
f(A)=(A+2)( A-4)( A+])

so the eigenvalues of A are

A,=2, 4,74 A,=1

then we find the associated eigenvectors by solving the linear system

(A 1,-A)=0:
and obtain the respective eigenvectors
0 =] 2
X, =1}, X2=[ 0} X,=1 0]
0 2 |

lts clear that { X, X, X3} isan orthogonal set of vectors in R’

(and this thus linearly independent by theorem *),
thus A is diagonalizable and is similar to

-2 0 0
D=0 4 0
0 0 -l

We recall that if Acan be diagonal zed, then there exists a nonsingular matrix P such that P AP

is diagonal, moreover the columns of P are eigenvectors of A

90
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lI NO“’ if the eigenvectors of A form an orthogonal sl S, as happens when A is symmetric and
C-L eigenvalue of A are distinet, then since any scalar multiple of an eigenvector of A is also an
igenve : , ; . i
T‘enwctor of A ,we can normalize S to obtain an orthonormal set
BRI
Of eigenvectors of A the 1" column of P is eigenvector X, associated with 4, and we now
exami 3 , . . ‘
: amine what type of matrix P must be, we can write P’ as
_{‘\1)(2..‘.\(”}, 2
Then

XI,

X r

pr=|"2

anr -
Where X' s I <i<n,is the transpose of the nx | matrix (or vector) X,

we find that the 1 j* entry in P"Pis X ,.X , (verify). Since

1 i = ¥
X X = ifi=j
0 ifi#j
Then P P=I . thusP’ =P, such matrices are important enough to have a special name.

Definition:A nonsingular matrix A is called orthogonal if

A=A"
Of course, we can also say thata nonsingular matrix A is orthogonal if
¥ A—
A A— 1 w2
r B 4
3 3 3
. —| 2 i 2
Example:let A=|$ 3 -3
' 1 2
3 3 3 i

It is easy to check that A" A=1T, henceA is an orthogonal matrix.

Example :let A be the matrix of examplel, we already know that the set of

0l(-11]|2
eigenvectors 4| 11, 00
02 ||!
Is orthogonal. If we normalize these vectors, we find that
Oll=%|lT
=41} 0 },| O
JIEIE
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Is an orthogonal set of vectors. the matrix P such that that P AP is diagonal is the matrix whose
ectors, the matrix P such that the E

columns are the vectors in 1. thus

' [ .
0 -% 3|

0 L L

V" JS
we leave it to the reader to verity that P is an orthogonal matrix and that
-2 0 0
P'AP=P'AP=| 0 4 0

0 0 -l

Theorem :the nxn matrix A is orthogonal if and only if the columns of A form an orthonormal
set of vectors in R” .

Remark :If the nxn matrix A is orthogonal then 1/11 #0

Theorem :if A is a symmetric nxn matrix, then there exists an orthogonal matrix P such that
P ' AP=D, a diagonal matrix. The eigenvalues of A lic on the main cllagonal of D .

Example : let

’ 0 2 2-‘;
| A=|2 0 2}|.
} 2 20

The characteristic polynomial of A is
f( 2)=(A+2)" (A-4),
so the eigenvalues are

A,=2, A,=2 A=

that is, -2 is an eigenvalue whose multiplicity is 2.
- 1o find the eigenvectors associated with 4, and A ,, we solve the homogeneous linear system (-

21,-A)X=0;

-2 =2 =2||x 0

2 -2 =2||x|7|0}. (4)

_2 =2 =2||x] |0

A basis for the solution space of (4) consists of the eigenvectors
-1 -1

Now X, and X, are not orthogonal, since X . X, #0, we can use the Gram -Schmidt process to
obtain an orthonormal basis for the solution space of (4) (the eigenspace of A =-2) as follows,

let

_..—.-—-—-"-'—"' et & B N ——————————_EEE LR ittt -
.__—-—""'
- —
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And

Let

The set { Y,,Y", } is an orthogonal set of vectors, Normalizing these eigenvectors, We obtain

=1 -]

0
The set { Z,,Z, } is an orthonormal basis of eigenvectors of A for the solution space of (4).
Now we find a basis for the solution space of system(41 ;-A)X=0,
4 -2 =2||=x 0
-2 4 =2{lx[=|0} (5)
-2 =2 4 ||x 0

To consist of

As an orthonormal basis for the solution space of (5),

since eigenvectors associated with distinct eigenvalue are orthogonal, we observe that Z ; is

orthogonal to both Z ,and Z,, Thus the set { Z,, Z,,Z,} isan orthonormal basis of R®
consisting of eigenvectors of A
The matrix P is the matrix whosej”’ columnisZ :
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pP= T}E J’:» 5
0 % &.
We leave it to the reader to verify that
-2 0 0
pAP=PTAP=| 0 -2 0).
. 0O 0 4

Example : let

A=

[=T =

2
1
0

—_ o <O
0 I o R =

0 0 2 1

The characteristic polynomial of A is

f(A)=(A+)? ((A-3)7,

so the Eigen values of A are

A =1, A,=-1, 4,73, 2,73

We find (verify) that a basis for the solution space of

(-11,-A)X=0 (6)
Consists of the eigenvectors
] 0
-1 0
| X~ and  X,=
0 |
0 -1

Which are orthogonal, Normalizing these sigenvectors, we obtain

L 0

7

=L 0
%= V2 and  Z,=| |

0 A

0 7

As an orthonormal basis of eigenvectors for the solution space of (6). We also find(verify) that a

s for the solution space of
bas! 31, -A)X=0 ™

Consists of the eigenvectors
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; | 0
X, 0 and X, = |
L 0; Ll

Which ar '
are K . = o ¢ -
orthogonal, Normalizing these eigenvectors, we obtain

: :
= 0]
|
- ;1 0
L= \6 and Z2;i=| |
Iz
0 kd

;tig?;:g??ﬁ;j“&a] basis of cigenvectors for the solution space of (7). Since eigenvectors
¢ istinct Eigen value are orthogonal, we conclude that
{ZI’ZZ’ZJ’Zd} ’
Is an orthonormal basis of R* consisting of eigenvectors of A the matrix P is the matrix whose

] th -
J 7 columnis Z

-
Pk

. I
£ 0 5 0]
SR
0 5 0 =
L g L
L NE NEl
Suppose now that A is an nxn matrix for which we can find an orthogonal matrix P such that

P ' AP is a diagonal matrix D

thusP ' AP=D or A=P AP ™.

Since P '=P", we can write A=P DP r

Then A" =P DP')"=(P")' D' P'=PDP'=A

(D=D", since D is a diagonal matrix). Thus A is symmetric.

Then

If P an orthogonal matrix such that P~' AP Thus A is symmetric

Exercises:
I 0 0

|.diagonalize A=l
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2- |
< _el f\ = <« C - =
) =2 [findorthogonal matrix such that P "AP is diagonalizable .

_: =3 (\

N
3- Show that if A i
l]l F Q - . A
It A is an orthogonal matrix then A’ is also orthogonal

4- Show irfA i
that if A is an orthogonal matrix then det(A)= Fl
5- Show ifA i
ow that if A is an orthogonal matrix then A 1 is also orthogonal

6- S / 1f . v ‘
how that if A ,B orthogonal matrices then AB is an orthogonalmatrix

LINES AND PLANES |

Lines in R*:
Any two distinct points P (x,,y,) and P, (X5,
ine whose equation Is
ax +by +c =0, (1)
b, and ¢ are real numbers, and a and ¢ are not both zero, since P, and P, lie on the line.

yin R?* (Figure 7.1)

Determine a straight |

where a,
their coordinates satisfy equation (1):
ax,+ by, +¢=0 (2)
ax,t by, +¢=0. (3)
we now write (1), (2), and (3) as a linear system in the unknowns a, b, and ¢, obtaining
xa+ybtc=0
" xatybte=0 )
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)\:,a‘i' )f2b+C:0

We scek a it
COH 3 g\ 20 W .o .
and ¢ Sine 4le1011 on the values x and y that allows (4) to have a nontrivial solution a, b
¥~ e - N =3 =Y oo L : AR 3 ' i
(4) is a homogeneous system. it hds a nontrivial solution il and only if the

determin: s ;
\ nate of the coefficient matrix is zero that is. if and only if
S
.\'l _vh 1 ={). (q)
.Yz )}2 1 -

Thus ever : . . e
fine every point P(x, y) on the line satisfies (5) and conversely, a point satisfying (5) lies on the

Example 1: find the equation of the line determined by the points P, (-1. 3) and

P, (4, 63.

Solution:

Substituting in (5), we obtain
x y 1

-1 3 1 =0

4 6 1

Expanding this determinant in cofactors about the first row, we have (verify)
-3x+ Sy- 18=0
Lines in R*
We may recall that in R? a line is determined by specifying its slop and one of its points.
In R® a line is determined by specifying its direction and one of its points. Let
U=(u, v, w) be a nonzero vector in R, and let P =(x, ¥, 2,) be a pointin R”, let X, bea
position vector in of P, then the line L through P, and parallel to U consists of the points P(x,
y, z) whose position vector X satisfy (figure 7.2)
X=X,+tU (-oo<t<o), - (6)
Equation (6) is called a parametric equation of L .since it contains the parameter t, which can
be assigned any real number, Equatien (6) can also be written in terms of the components as

X=x,Ttu
Y=y, v
Z=z,Htw,
Which are called parametric equation of L.

Example 2: parametric equations of the line through the point P ;(-3,2,1), which is parallel

to the vector U=(2,-3,4), are
X=-3+2
Y=2-3t (-00<t< )

7= 1+4t.




Exan
1 s e . : . ) ,
o ple 3: find parametric equations of the line L through the point P (2,3,-4) and
1(3,-2,5) )
Solution:
The desired Line :
¢ desired line s parallel to the vector U= o Now
Since p U=(3-2, -2-3, 5-(-4))= (1,-5,9).
¢ P lies on the line, we can write the parametric equations of L. as
X=2+t
Y= 3-5t
e g 7=-449t,
n Example 3 we could have used the point P, instead of P, in fact we could use any point on

the line i : : " : e
o line in the parametric equations of L. Thus a line can be represented in infinitely many ways
n parametric form, if u, v, and w aré nonzero in (7), we can solve each equation for t and equate

the results to obtain the equations in symmetric form of the line through P, and parallel to U:

’_X:-‘izy‘vﬂg‘:_zo

o

u v W
I'he equations in symmetric form of the line are usual in some analytic geometry applications.

Example 4: The equat-ions in symmetric form of the line in Example 3 are
.\’~2: y=3 z+4
1 -5 9
Planes in R’: ,
A plane in R? can be determined by specifying a point in the plane and vector perpendicular to

it, A vector perpendicular to a plane is called normal to the plain.
To obtain an equation of the plane passing through the point P,=(x,,¥,,Z,) and having

The nonzero vector N= (a, b, ¢) as a normal we proceed as follows, A point P(x, y, z)
Lies in the plane if and only ifthe vector p,p, is perpendicular to N (figure 7.3) -
Thus P(x, y, z) lies in the plane if and only if

N. p,p, =0 (8)
Since
PPy (XX s ¥-Y o5 Z70)s
We can write (8) as
9

a(x- x0)+b( y- )’o)+c( =2y 1,

Example 5: Find an equation of the plane passing through the point (3,4, -3) and
perpendicular to the vector N=(5, -2, 4).

Solution: _ .
Substituting in (9), we obtain the equation of the plane as

5(x- 3) — 2(y- 4)y+4(z+ 3)=0 . (10)

98
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A plane is
o 1S ais st iy . . . . %
also determined by three nonlinear points, as we show in the following example.

Ex -
ample 6:Find an equation of the plane passing through the points p, (2, -2, 1),

P, (1,0, 3), and p, (5, -3, 4).

Solution:
T - —X% . -
he nonparallel vectors  p,p, = (-3,2,2) and p,p;y = (3, -1, 3) liein the plane, since the points

Py, P, and p,lie in the plane, the vector

N= p,p, X p,py = (8,15,-3)
Is then perpendicular to both p,p, and p,pyis thus a normal to a plane, using the vector N and

the point p, (2, -2, 1) in (9), we obtain an equation of the plain as
: . 8(x- 2)+ 15(y+2) — 3(z- D70
f we multiply out and simplify, (9) can be written as -
ax + by + cz +d=0 (1
e in Example 6 can be rewritten in the form given by

(12)

Example 7: The equation for the plan
equation (11) as
8x + 15y -3z +17=0

Exa mple 8: A second solution to Example 6 is as follows, let the equation of the desired

plane be
ax +by +cz +d =0 (13)
where a, b, ¢ and d are to be determined. Since p,, P lie in the plane, their coordinates
satisfy (13), thus we obtain the linear system
2a-2b+c+d=0
-a +3¢c+d =0
52— 3b +4c +d=0.

Solving this system, We have
a= &,

where r is any real number, letting r=17, we obtain
a=8, b=15 g= .3, 0=,

12) as in the first solution.

and p,

= 5 =
b=, c=-%r, d=TL,

which yields (

d solution to Example 6 is as follows, proceeding as in the case of a line

Example 9: A thir
, it is not difficult to show that an equation of

:n R ? determined by tWo distinct points P, and P,

|(x]3ynzz)7Pz(xz’YZ7zz)a

the plane through the non collinear points P
And P,(X35, Y3s z,) 18
x Yy Z 1
% N A ] -0
X, Jo %2 I
v, Vs 23 !
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In our ¢
e) » ~ 1 y H 1
xample. the equation of the desired plane is

X ¥y z 1!

2 -2 1 |
|“1 0 3 =0,
5 =3 4 |

Expandi is de i | |

Thge dmg this determinant in cofactors about the first row, we obtain equation (12)
(- l i~ < 3 1 ¥ i *

| ﬁq la.llon. of a line in symmetric form can be used to determine two plans whose

‘ntersection is the given line.

Ex : . - .
ample 10: find two plans whose intersection is the line

- X =-2+3t
Y=3-2t (-o0< t<m)
Z=35+4t.

Solution:
First ,find equations of the line in symmetric form as

x+2 _y-3 _2-5

3 -2 4
The given line is then the intersection of the plans
x+2 _y-3 x+2 _z-5

% m— a"d = —

2 3 4

3 2
Thus the given line is the intersection of the planes
2x+3y-5=0 and 4x—3z+23=0
Two planes are either parallel or they intersect in a straight line, they are parallel if their normal
are parallel, in the following example we determine the liné of intersection of two planes. '

Example 11: Find parametric equations of the line of the intersection of the planes

m, 2 2x + 3y 2z+4=0 and ~ 7, x—y+2z+3=0.

Solution:

Solving the linear system consisting of the equations of 7, and m,, we obtain

8 35
2 6
= —+—/ -0 < [ <0
St ( )
Z=0+t

As parametric equation of the line L of intersection of the planes

ue point, or may not

tersection in a plane, in a line in a uniq
e linear system consisting of

Three planes in R* may in
ssibilities can be detected by solving th

intersection at all, these po
their equations.
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radratic forms

Minition:ir A
g ONSiT A i ac _ _ ”
A is asymmetric matrix (A = A"), then the function Q:R" >R

beal- valued funct; i
ued function defined on R” ydefined by

Q(\) = x ' 4'\X\
Where

| \’
Is called a quadratic form in n variables X, X,
the quadratic form Q. we shall also denote the quadratic form by Q(x).

n

x, The matrix A is called the matrix of

{xa m p]C 1: the left side of equation (1) is the quadratic form in the variable X and Y: where

Q(x)=X"AX
X= and A= .
v b ¢

Lxam ple 2+ the left side of equation (1) is the quadratic form
Q(x) = X" AX,

; | Where
X a d e
X=|yland A=|d b il
z e [ ¢

Xa mple 3: The following expressions are quadratic form:

2 2 3OF||x
(a) 3x -5xy -7y [x y]Li _JL}}

1- 3x2-7xy+5xz+4y2-4yz-322=[x y

eafn
=

™
[ENE)

4 -=-21\y
-2 -3

(8]

o L W
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Suppos
: 0S¢ now th; N=X! AN | b T i
form th : that Q(x)= X' AX is a quadratic form. To simplify the quadratic form, we change
¢ variable : ) -
variab! 1able X X, ,....x, to the variables y, ¥y o0 Y s where we assume that the old
ariables are relate . R :
re related to the new variables by X = PY for some orthogonal matrix P .then

) X) = \' > E
%s'(l:}pl}x \\ = (PY) A(PY) =Y/ (P"AP)Y = Y BY,

creB =P AP, and if A is a symmetric matrix then P " AP is also symmetric thus
Q(M)=Y'BY

Is another quadratic form and Q(x) = Q' (Y).

efinition ;1w . ;
N iTwon x n matrices A and B are said to be congruent if B= P” AP for a nonsingular matfix

Efini ] s , > ) 3 o
tion .T\§0 quadratic forms Q and Q' with matrices A and B, respectively are
said to be equivalent if A and B are congruent .

Xxample 4 : consider the quadratic form in the variables x and y defined by

Q(x)=2x2+2xy+2y’=[x ] F 1]{1- -(3)

L 2y

We now change form the variables x and y to the variables x” and y', suppose the old variables
are related to the new variables by the equations o

P, ] | |
Xe by and Y=—fxt—= |
= ,—2y y )

X
| - 2 2

Which can be written in matrix form as

L
(12 T

Where the orthogonal (hence nonsingular) matrix

=L &
Pz{‘? {1 and Y=[ g lhe
T &z Y

Substituting in (3) we obtain -
Qx) = X' AX = (PY) A(PY) = Y'P"APY

__....—._-—...—.-———n——.——————.——-—-_'__u-———_.-———-——._.__.——_-.—-—.__....-——_.
————
T —
p—




d142 2 {2 q
LI N N R ) DL
2 A2 2 N2
3 0 x' y
= / ;l = Y
[ ){0 ]L, Q'(Y)

|

|

|

1

|

I

|

| |

I =Xy
I 1
|

|

|

|

|

|

|

Thus the matrices

I
|
f 2 1 30
I and
i 1 2 0 1
: Are congruent and the quadratic forms Q and Q' are equivalent.
: The equation .
: Q(x)=2x*+2xy+2y’=9 ....(5) )
[ \
l
.‘
: Represents a conic section ,since Q is a quadratic form defined in example 4, it is equivalent to
: the quadratic form :
: QI(Y)ZSXIZ _|_yr’2.
I Now the equation :
| Q/(Y)=3x"? +y2=9.....(6) Is
: the equation of an eilipse. '
I ) .
:fheorem 8: Any quadratic form in n variables Q(x) = X "AX is equivalent by means of an
: : : - 2 2
rthogonal (principal nal matrix P to a quadratic form, Q' (Y)= Z,lylz +4:;)5 +Fatd, Y,
Vi
y= |72
Y -

And A, 4,,..., 4, are the Eigen values of the matrix A of Q.

!
b

roof : .
If A is the matrix of Q, then since A is symmetric we know by theorem * that A can be
diagonalized by an orthogonal matrix, this mean that there exists an orthogonal matrix P such

that
B=P 'AP is diagonal matrix, since P is orthogonal ,

P'=P",soB=P'AP

— — — e T — —— — — — | — —— — —
—_—— i — — ——
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moreove
r.lhc 1) . ' . A
elements on themain diagonal of B are the Eigen values 4,,4,, oA, of A, the

quadratic for :
tic form Q" with matrix B is given by

| Q (Y) Ay, + Ay, !_..*/".V.!
& Qand | B
|

ample 5

|

are equivalent .

+ consider the auadeatio f . r -
rthe quadratic form Q in the variables x, y and z, defined by

- Q(x)=2x2+ 4y + 6yz - 42’
I'he matrix of Qis £ '

0
A=|0 4 3
0 3 -4
And the Eigen values of A are
A =2, A, =S5, and A, =-5

Let Q be the quadratic form in variables x', y/, and z' defined by

N Qf(Y)=2x}2 +5y!2_5212.
'hen Q and Q° are equivalent by means of some orthogonal matrix, since

2.0 0
D=0 5 0
0 0 -5

Is the matrix of Q' , A and D are congruent matrices.

lxample 6: consider the conic section whose equation is (3),
Q(x)=2x2+2xy + 2y’ =9,
This conic section can also be described by equation (6)
Q/(Y) = 3){/2 + y.’2
Which can be written as
/2 /2
2 il _}i.__ =1
3 9
This is the equation of an ellipse .
whose major axis is along the y-ax

length J3, we now note that there is q very close connection between the eigenvectors of the

matrix Q in (5) and the location of the x’ -and y’ -axes
inceX = PY, we have Y =P~ X= P’ X (P is orthogonal), thus

is, the semi major axis is of length 3, the semi major axis of

1 | ; | ]
sy —=ypandy =——=¥t—)
X =5 R NP

This means that in terms of the x- and y-axes, the x’-axis lies along the vector

- ____._.._——_-—.__._.-—_——_—.-.—_-__—_-——.-._—__-_..——_
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X,= wlli

—

V2

N .
Now X and X , are the columns of the matrix

LN
< F|
NERNGY

Which in turn are eigenvectors of the matrix A, thus the x'-and y’ -axes lie along the
Eigenvectors of the matrix A.
The situation described in example 6 is turn in general, thus the principal axes of a conic
Or surface lie along the eigenvectors of the matrix of the quadratic form.
Let Q(X)=X' AX be a quadratic form in n variable, then we know that Q is equivalent
To the quadratic form Q'(Y) = 21)42 o+ /quzz +...+ l,,y,,zwhere Ay Apseses &y ALE the eigenvalues
of the matrix A of Q ,we can label the eigenvalues 4, 4,,...,4, so that all the
Positive eigenvalues of A ,if any, are listed first, followed by all the negative eigenvalues
Of A ,if any, followed by the zero cigenvalues, if any, thus let A, 4,,...,4, be positive,
' Aepis Apezseees 4, € negative, and A4 ,,,4,,5,...,4, be Zero, we now define the diagonal matrix
H whose entries on the main diagonal are

1

1 1 1 ] I .
’ 3 o : : vvry—==,L1,...,], with n —r ones, let D be the diagonal
| ‘\f/‘[1 '\J/lz 1}){'p ‘\[_ lp-rl \F’lmz Vﬁlr

Matrix whose entries on the main diagonal are L Ryvvosdpo Ao ps Apugsoves Ay Ao iy v g

A and D are congruent let D= H 7" DH be the matrix whose diagonal elements are

L1, k=100, (p ones, n —r Zeros);
D and D, are then congruent, it follows that A and D are congruent, in terms of quadratic forms,

[heorem 9: A quadratic form Q(x)=X"AX inn variablef is equivalent to a
2 2 2 2 2
QUadraticform QN =y +y, Tt ¥y “Vpu ~Vpn —---“J"rl forsome 0< p.r<n.
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nber of nonzero entries On its diagonal, now it

ank of D, isrand the

matrix is A, the

[Uis clear that the rank of matrix D is r, the nur
es have Equal ranks. since the
f the quadratic form Q whose
en values and the number

_ rand called the Signature
have equal ranks an

. can be show

' o CFSRO\\n that the convergent matric

ank of A i ala :
Dil‘l‘crcnc\]i r, we also refer to r as the rank o
OF e a['L- elween the number of positive Eig
. gh ive Eigen valuesiss=p —(r—p) = 2p
rm, thus if / - N
Q and Q' are equivalent Quadratic form then they

{ the quadratic
d signatures.

Lﬂ\ : i
ple 7: consider the quadratic form:
QX) =3x,] +8x,x, —3x, =X'AX

5 00 0fx
=lx, x *%]0 3 4 |x .
0 4 =3|x

The Eigen values of A are
'31:_5’ A=-5, and 4=0,
In this case A is congruent to

5 0 0
r D=0 -5 0
0 0 0
If we let
+ 0 01
= u ‘
H=1k - 01,
0o 0 1
Then
1 0 0
D,=H"DH=|0 -1I"-0
0 0 0
Ar:d A ?re coilgruent, and the given quadratic form is equivalent to the Canonical form
Q=y 1

The rank of Q 18 2, and since p = 1, the signature s = 2p-r=0

:A symmetric n x n matrix A is called positive definite if X" AX >0 For every

Yefinition
onzerovector X inR".

[heorem 10: A symmetric matrix A is positive definite if and only if all the eigenvalues of A are

ositive.
n called positive definite if its matrix is positive definite

A quadratic form is the

p— e et ———— ———
= — =
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corem 4.82 (
. 4 ca\'le 1 l] i - 11 1e ar it 'c FLI 4 il’l
& L(V). then g : : amllton). 1f f( 2) is the characteristic polynomial of the mapping
00f:As ment; ' B
ESOI brmemloned above, we argue using matrices, let Ae M, (F) be the matrix of T relative
‘n S . ~ n .
e Amejd; 'D.B.SIS for v, by the corollary to theorem 4 —33, the adjoint of the matrix
' A = Al'is known to satisfy the identity
5 _ (A - Al)adj (A - Al)=det (A- A1 =1( )

Ince A - Al is of order n, the elements of adj (A - Al Jare signed determinants of order n-!

When expanded, these yield polynomials in A of degree at most n-1, combining the terms

; lnvolving powers of 4 into a coefficient matrix B, we may write adj(A - Af} as the
polynomial matrix

| adj(A- AI)= B _ A" +...+ BA+B,,
; where each B, e M (F), if the characteristic polynomial of T is given by

,f(}“)z DA+ + L+ b A+ b, ' beF
’ then our adjoint identity can be written in the more detailed form

(A- AYB, A" +...+ BA+B)=((-1)' A + B L b+ by )l
' Both sides of this equation are polynomial matrices in A of degree n,

Since two polynomial
Matrices are equal if and only if their corresponding coefficients are equal, we obtain the
l Following relations:
- Bu—l = (_1)” {
ABH;! - Blr? = bn—l]

| ABn—Q - Bn—B = bn—'_"{ :

AB, - By =b,1
AB, =by1

Now multiply these matrix equations on the leftby A", 4" ,.... 4,1, respectively, and add  the

Results, the terms on the left-hand side will cancel out in pairs, leaving only the zero matrix,

This gives
0=(-1)"4"+ BT AT 4.+ b A+ byl = f(A).

on of matrices in M , (F) with elements of L(V), the foregoing

Equation can be written as f(T) = 0, which is the result we require there is a fairly short, but
Erroneous, "proof” of this last result which runs as follows formally substitute the matrix A
3

For the indeterminate 2in the characteristic polynomial f( A)=det (A - Al), the net effect

Is that f(l)=det(A—A])=det(A—A)=det0?0. |
The fallacy in this attractive argument is that the right-most zero is a scalar whereas

Through the usual associati

'.-._.-_-_.-—-'-_——_.—-_—.___44
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theorem

4 - 82 asserts that f(2)
The cayley —
Shall examin

ix of order n, “which we
should equal the zero matrix (JEIQFJ applications, two of “.,h!.?h;
: : rof interesting appli olynomial in
: corem has a numbe . ng any poly
Hmmh@n{‘lhcqtrc ovides an easy method of expressing
¢ below, first it prov ¢

B A - Al )bethe
o tet f{ Ay =det (
Matrix A e M () as a polynomial of degree at most n — 1, le ( . iy Vi g( 1)
Characterist | olynomial of A and g( ) be an arbitrary polynomial,
aracteristic poly; ;

r




	LINEAR 
	ALGEBRA (2)
	Second Class


