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Chapter Two: Equivalence Between Integral Equations 

and Ordinary Differential Equations 

 

2.1 Converting Volterra Equation to an ODE 
In this section, we will present the technique that converts Volterra integral 

equations of the second kind to equivalent differential equations. This may be easily 

achieved by applying the important Leibniz Rule for differentiating an integral. It seems 

reasonable to review the basic outline of the rule. 

2.1.1 Differentiating Any Integral: Leibniz Rule 

 To differentiate the integral ∫ 𝐺(𝑥, 𝑡)𝑑𝑡
𝛽(𝑥)

𝛼(𝑥)
 with respect to x, we usually apply 

the useful Leibniz rule given by: 
𝑑

𝑑𝑥
∫ 𝐺(𝑥, 𝑡)𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)
= 𝐺(𝑥, 𝛽(𝑥))

𝑑𝛽

𝑑𝑥
− 𝐺(𝑥, 𝛼(𝑥))

𝑑𝛼

𝑑𝑥
+ ∫

𝜕𝐺

𝜕𝑥
𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)
                   (2.1) 

where G(x, t) and  
𝜕𝐺

𝜕𝑥
 are continuous functions in the domain D in the xt-plane that 

contains the rectangular region R, a ≤ x ≤ b, t0 ≤ t ≤ t1, and the limits of integration α(x) 

and β(x) are defined functions having continuous derivatives for a < x < b. We note that 

the Leibniz rule is usually presented in most calculus books, and our concern will be 

on using the rule rather than its theoretical proof. The following examples are 

illustrative and will be mostly used in the coming approach that will be used to convert 

Volterra integral equations to differential equations. 

Particular case: If α(x) and β(x) are absolute constants, then (2.1) reduces to: 

𝑑

𝑑𝑥
∫ 𝐺(𝑥, 𝑡)𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)

= ∫
𝜕𝐺

𝜕𝑥
𝑑𝑡

𝛽(𝑥)

𝛼(𝑥)

 

Example 2.1. Find 
𝒅

𝒅𝒙
∫ (𝒙 − 𝒕)𝟐𝒖(𝒕)𝒅𝒕

𝒙

𝟎
 

In this example α(x)=0 , β(x)=x, hence 
𝑑𝛼

𝑑𝑥
=0, 

𝑑𝛽

𝑑𝑥
=1and 

𝜕𝐺

𝜕𝑥
= 2(𝑥 − 𝑡)𝑢(𝑡). Using 

Leibniz rule (2.1), we find: 

𝒅

𝒅𝒙
∫(𝒙 − 𝒕)𝟐𝒖(𝒕)𝒅𝒕

𝒙

𝟎

= ∫ 𝟐(𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎
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Example 2.2. Find 
𝒅

𝒅𝒙
∫ (𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎
 

In this example α(x)=0 , β(x)=x, hence 
𝑑𝛼

𝑑𝑥
=0, 

𝑑𝛽

𝑑𝑥
=1and 

𝜕𝐺

𝜕𝑥
= 𝑢(𝑡). Using Leibniz rule 

(2.1), we find: 

𝒅

𝒅𝒙
∫(𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎

= ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

Example 2.3. Find 
𝒅

𝒅𝒙
∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎
 

In this example α(x)=0 , β(x)=x, hence 
𝑑𝛼

𝑑𝑥
=0, 

𝑑𝛽

𝑑𝑥
=1and 

𝜕𝐺

𝜕𝑥
= 0. Using the Leibniz rule 

(2.1), we find: 

𝒅

𝒅𝒙
∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

= 𝒖(𝒙) 

We now turn to our main goal to convert a Volterra integral equation to an equivalent 

differential equation. This can be easily achieved by differentiating both sides of the 

integral equation, noting that the Leibniz rule should be used in differentiating the 

integral as stated above. The differentiating process should be continued as many times 

as needed until we obtain a pure differential equation with the integral sign removed. 

Moreover, the initial conditions needed can be obtained by substituting x =0 in the 

integral equation, and the resulting integro-differential equations will be shown. We are 

now ready to give the following illustrative examples. 

Example 2.4.  Find the initial value problem equivalent to the Volterra integral 

equation:     𝒖(𝒙) = 𝟏 + ∫ 𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

Differentiating both sides of the integral equation and using the Leibniz rule we find: 

𝑢′(𝑥) = 𝑢(𝑥) 

The initial condition can be obtained by substituting x = 0 into both sides of the integral 

equation; hence we find u(0) = 1. Consequently, the corresponding initial value problem 

of the first order is given by: 

  

𝑢′(𝑥) − 𝑢(𝑥) = 0, 𝑢(0) = 1 

Example 2.5. Convert the following Volterra integral equation to an initial value 

problem:   𝒖(𝒙) = 𝒙 + ∫ (𝒕 − 𝒙)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

Differentiating both sides of the integral equation, we obtain: 
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𝒖′(𝒙) = 𝟏 − ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

We differentiate both sides of the resulting integro-differential equation to remove 

the integral sign, therefore, we obtain: 

𝒖′′(𝒙) = −𝒖(𝒙) 

or equivalently  

𝒖′′(𝒙) + 𝒖(𝒙) = 𝟎 

The related initial conditions are obtained by substituting x = 0 in u(x) and in u′(x) in 

the equations above, and as a result we find u(0) = 0 and u′(0) = 1. Combining the above 

results yields the equivalent initial value problem of the second order given by: 

𝒖′′(𝒙) + 𝒖(𝒙) = 𝟎 , 𝒖(𝟎) = 𝟎, 𝒖′(𝟎) = 𝟏 

Example 2. 6. Find the initial value problem equivalent to the Volterra integral 

equation: 𝒖(𝒙) = 𝒙𝟑 + ∫ (𝒙 − 𝒕)𝟐𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

Differentiating both sides of  the above equation three times, we find: 

𝒖′(𝒙) = 𝟑𝒙𝟐 + 𝟐 ∫(𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

𝒖′′(𝒙) = 𝟔𝒙 + 𝟐 ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

𝒖′′′(𝒙) = 𝟔 + 𝟐𝐮(𝐱) 

The proper initial conditions can be easily obtained by substituting x = 0 in u(x), u′(x) 

and u″(x) in the obtained equations above. Consequently, we obtain the 

nonhomogeneous initial value problem of third order given by: 

𝒖′′′(𝒙) − 𝟐𝐮(𝐱) = 𝟔 , 𝒖(𝟎) = 𝟎 , 𝒖′(𝟎) = 𝟎 , 𝒖′′(𝟎) = 𝟎 

Exercises 2.1. 

In exercises 1-4, find 
𝑑

𝑑𝑥
 for the given integrals by using the Leibniz rule: 

1. ∫ (𝒙 − 𝒕)𝟑𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

2. ∫ 𝒆𝒙𝒕𝒅𝒕
𝒙𝟐

𝒙
 

3. ∫ (𝒙 − 𝒕)𝟒𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

4. ∫ 𝒔𝒊𝒏(𝒙 + 𝒕)𝒅𝒕
𝟒𝒙

𝒙
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In exercises 5-8, convert each of the Volterra integral equations to an equivalent initial 

value problem: 

5. 𝒖(𝒙) = 𝒆𝒙 + ∫ (𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

6. 𝒖(𝒙) = 𝟐 + 𝟑𝒙 + 𝟓𝒙𝟐 + ∫ [𝟏 + 𝟐(𝒙 − 𝒕)]𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

7. 𝒖(𝒙) = 𝒙 − 𝒄𝒐𝒔𝒙 + ∫ (𝒙 − 𝒕)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

8. 𝒖(𝒙) = −𝟓 + 𝟔𝒙 + ∫ (𝟓 − 𝟔𝒙 + 𝟔𝒕)𝒖(𝒕)𝒅𝒕
𝒙

𝟎
 

2.2 Converting IVP to Volterra Equation 

In this section, we will study the method that converts an initial value problem to an 

equivalent Volterra integral equation. Before outlining the method needed, we wish to 

recall the useful transformation formula: 

∫ ∫ ∫ … ∫ 𝒇(𝒙𝒏)𝒅𝒙𝒏 
𝒙𝒏−𝟏

𝟎
…

𝒙𝟐

𝟎
𝒅𝒙𝟏

𝒙𝟏

𝟎

𝒙

𝟎
=

𝟏

(𝒏−𝟏)!
∫ (𝒙 − 𝒕)𝒏−𝟏𝒇(𝒕)𝒅𝒕

𝒙

𝟎
              (2.2) 

that converts any multiple integral to a single integral. This is an essential and useful 

formula that will be employed in the method that will be used in the conversion 

technique. We point out that this formula appears in most calculus texts. For practical 

considerations, the formulas: 

∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
= ∫ (𝒙 − 𝒕)𝒇(𝒕)𝒅𝒕

𝒙

𝟎
                                                 (2.3) 

∫ ∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
𝒅𝒕

𝒙

𝟎
=

𝟏

𝟐
∫ (𝒙 − 𝒕)𝟐𝒇(𝒕)𝒅𝒕

𝒙

𝟎
                                    (2.4) 

are two special cases of the formula given above, and the most used formulas that will 

transform double and triple integrals respectively to a single integral for each. For 

simplicity reasons, we prove the first formula (2.3) that converts a double integral to a 

single integral. Noting that the right-hand side of (2.3) is a function of x allows us to 

set the equation:  

𝑰(𝒙) = ∫ (𝒙 − 𝒕)𝒇(𝒕)𝒅𝒕
𝒙

𝟎
                                                             (2.5) 

Differentiating both sides of (2.5), and using the Leibniz rule, we obtain: 

𝑰′(𝒙) = ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
                                                                        (2.6) 

Integrating both sides of (2.6) from 0 to x, noting that I(0) = 0 from (2.5), we find: 

𝑰(𝒙) = ∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
      

Exercises 2.2. Prove that ∫ ∫ ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝟎
𝒅𝒕

𝒙

𝟎
𝒅𝒕

𝒙

𝟎
=

𝟏

𝟐
∫ (𝒙 − 𝒕)𝟐𝒇(𝒕)𝒅𝒕

𝒙

𝟎
 

Example 2.7. Convert the following quadruple integral: 

𝑰(𝒙) = ∫ ∫ ∫ ∫ 𝒖(𝒕)𝒅𝒕

𝒙

𝟎

𝒅𝒕

𝒙

𝟎

𝒅𝒕

𝒙

𝟎

𝒅𝒕

𝒙

𝟎
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to a single integral. 

Using the formula (2.2), noting that n = 4, we find: 

𝑰(𝒙) =
𝟏

𝟑!
∫(𝒙 − 𝒕)𝟑𝒖(𝒕)𝒅𝒕

𝒙

𝟎

 

Returning to the main goal of this section, we discuss the technique that will be used 

to convert an initial value problem to an equivalent Volterra integral equation. Without 

loss of generality, and for simplicity reasons, we apply this technique to a third-order 

initial value problem given by: 

𝑦′′′(𝑥) + 𝑝(𝑥)𝑦′′(𝑥) + 𝑞(𝑥)𝑦′(𝑥) + 𝑟(𝑥)𝑦(𝑥) = 𝑔(𝑥)                      (2.7) 

subject to the initial conditions: 

𝑦(0) = 𝛼 , 𝑦′(0) = 𝛽 , 𝑦′′(0) = 𝛾      , 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡         (2.8) 

The coefficient functions p(x), q(x), and r(x) are analytic functions by assuming that 

these functions have Taylor expansions about the origin. Besides, we assume that g(x) 

is continuous through the interval of discussion. To transform (2.7) into an equivalent 

Volterra integral equation, we first set: 

𝑦′′′(𝑥) = 𝑢(𝑥)                                                    (2.9) 

where u(x) is a continuous function on the interval of discussion. Based on (2.9), it 

remains to find other relations for y and its derivatives as single integrals involving 

u(x). This can be simply performed by integrating both sides of (2.9) from 0 to x where 

we find: 

𝑦′′(𝑥) − 𝑦′′(0) = ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

 

or equivalently 

𝑦′′(𝑥) = 𝛾 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                          (2.10) 

To obtain y′(x) we integrate both sides of (2.10) from 0 to x, to find that: 

𝑦′(𝑥) = 𝛽 + 𝛾𝑥 + ∫ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
𝑑𝑡

𝑥

0
                             (2.11) 

Similarly, we integrate both sides of (2.11) from 0 to x to obtain: 

𝑦(𝑥) = 𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2 + ∫ ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
          (2.12) 

respectively. Substituting (2.9), (2.10), (2.11), and (2.12) into (2.7) leads to the 

following Volterra integral equation of the second kind: 

𝑦′′′(𝑥) + 𝑝(𝑥)𝑦′′(𝑥) + 𝑞(𝑥)𝑦′(𝑥) + 𝑟(𝑥)𝑦(𝑥) = 𝑔(𝑥)  

⟹ 𝑢(𝑥) + 𝑝(𝑥)[𝛾 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
] + 𝑞(𝑥)[𝛽 + 𝛾𝑥 + ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
] +

                                                     𝑟(𝑥) [𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2 + ∫ ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
𝑑𝑡

𝑥

0
] = 𝑔(𝑥)  
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⟹ 𝑢(𝑥) + 𝑝(𝑥) [𝛾 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

] + 𝑞(𝑥) [𝛽 + 𝛾𝑥 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

]

+  𝑟(𝑥) [𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2 +

1

2
∫(𝑥 − 𝑡)2𝑑𝑡

𝑥

0

] = 𝑔(𝑥) 

⟹ 𝑢(𝑥) = (𝑔(𝑥) − {𝑝(𝑥)𝛾 + 𝑞(𝑥)(𝛽 + 𝛾𝑥) + 𝑟(𝑥) (𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2)})

+ ∫ [−𝑝(𝑥) − (𝑥 − 𝑡)𝑞(𝑥) −
1

2
(𝑥 − 𝑡)2𝑟(𝑥)] 𝑢(𝑡)𝑑𝑡

𝑥

0

 

⟹ 𝑢(𝑥) = 𝐹(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

Where 𝐹(𝑥) = (𝑔(𝑥) − {𝑝(𝑥)𝛾 + 𝑞(𝑥)(𝛽 + 𝛾𝑥) + 𝑟(𝑥) (𝛼 + 𝛽𝑥 +
1

2
𝛾𝑥2)}) 

and [𝐾(𝑥, 𝑡) = −𝑝(𝑥) − (𝑥 − 𝑡)𝑞(𝑥) −
1

2
(𝑥 − 𝑡)2𝑟(𝑥)] 

The following examples will be used to illustrate the above-discussed technique. 

Example 2.8. Convert the following initial value problem 

𝑦′′′ − 3𝑦′′ − 6𝑦′ + 5𝑦 = 0 

Subject to the initial conditions:  𝑦(0) = 𝑦′(0) = 𝑦′′(0) = 1 

to an equivalent Volterra integral equation. 

As indicated before, we first set: 

𝑦′′′(𝑥) = 𝑢(𝑥)                                                (2.13) 

Integrating both sides of (2.13) from 0 to x and using the initial condition y″(0) = 1, we 

find: 

𝑦′′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                 (2.14) 

And  𝑦′(𝑥) = 1 + 𝑥 + ∫ ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
𝑑𝑡

𝑥

0
 

𝑦′(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                      (2.15) 

And  𝑦(𝑥) = 1 + 𝑥 +
1

2
𝑥2 + ∫ ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

𝑥

0
𝑑𝑡𝑑𝑡

𝑥

0
 

𝑦(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
          (2.16) 

Substituting (2.13), (2.14), (2.15), and (2.16) into the IVP, we find: 

𝑦′′′ − 3𝑦′′ − 6𝑦′ + 5𝑦 = 0 

⟹ 𝑢(𝑥) − 3[1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
] − 6[1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
] + 5 [1 + 𝑥 +

1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
] = 0  
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⟹ 𝑢(𝑥) = 3 [1 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

] + 6 [1 + 𝑥 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

]

− 5 [1 + 𝑥 +
1

2
𝑥2 +

1

2
∫(𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0

] 

⟹ 𝑢(𝑥) = 4 + 𝑥 −
5

2
𝑥2 + ∫ [3 + 6(𝑥 − 𝑡) −

5

2
(𝑥 − 𝑡)2] 𝑢(𝑡)𝑑𝑡

𝑥

0

 

the equivalent Volterra integral equation. 

Example 2.9. Find the equivalent Volterra integral equation to the following initial 

value problem: 

𝑦′′(𝑥) + 𝑦(𝑥) = 𝑐𝑜𝑠𝑥  , 𝑦(0) = 0, 𝑦′(0) = 1 

As indicated before, we first set: 

𝑦′′(𝑥) = 𝑢(𝑥)                                                (2.17) 

Integrating both sides of (2.17) from 0 to x and using the initial condition 𝑦′(0) = 1, 

we find: 

𝑦′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

 

𝑦(𝑥) = 𝑥 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

And 𝑦′′(𝑥) + 𝑦(𝑥) = 𝑐𝑜𝑠𝑥 ⟹ 𝑢(𝑥) + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
= 𝑐𝑜𝑠𝑥 

⟹ 𝑢(𝑥) = 𝑐𝑜𝑠𝑥 − 𝑥 − ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

the equivalent Volterra integral equation. 

Exercises 2.3. 
Convert each of the following first-order initial value problems to a Volterra integral 

equation: 

1. y′ + y = sec2x, y(0) = 0 

2. y″ − sinx y′ + exy = x, y(0) = 1, y′(0) = −1 

3. y″′ − y″ − y′ + y = 0, y(0) = 2, y′(0) = 0, y″(0) = 2 

 

2.3 Converting BVP to Fredholm Equation 

 
So far we have discussed how an initial value problem can be transformed to an 
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equivalent Volterra integral equation. In this section, we will present the technique that 

will be used to convert a boundary value problem to an equivalent Fredholm integral 

equation. The technique is similar to that discussed in the previous section with some 

exceptions that are related to the boundary conditions. It is important to point out here 

that the procedure of reducing the boundary value problem to the Fredholm integral 

equation is complicated and rarely used. The method is similar to the technique 

discussed above, which reduces the initial value problem to Volterra integral equation, 

with the exception that we are given boundary conditions. 

Special attention should be taken to define y′(0) since it is not always given, as 

will be seen later. This can be easily determined from the resulting equations. It seems 

useful and practical to illustrate this method by applying it to an example rather than 

proving it. 

Example 2.10. We want to derive an equivalent Fredholm integral equation to the 

following boundary value problem:   𝑦′′(𝑥) + 𝑦(𝑥) = 𝑥  , 0 < 𝑥 < 𝜋 

subject to the boundary conditions: 𝑦(0) = 1, 𝑦(𝜋) = 𝜋 − 1 

We first set:                 𝑦′′(𝑥) = 𝑢(𝑥)                                                            (2.18) 

Integrating both sides of the above equation from 0 to x gives: 

∫ 𝑦′′(𝑡)𝑑𝑡
𝑥

0
= ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
⟹ 𝐲′(𝐱) = 𝐲′(𝟎) + ∫ u(t)dt

x

0
                       (2.19) 

As indicated earlier, y′(0) is not given in this boundary value problem. However, y′(0) 

will be determined later by using the boundary condition at x = π. Integrating both sides 

of the last equation from 0 to x and using the given boundary condition at x= 0, we find: 

𝒚(𝒙) = 𝒚(𝟎) + 𝒚′(𝟎)𝒙 + ∫ ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0

𝑑𝑡

𝑥

0

⟹ 𝒚(𝒙) = 𝟏 + 𝒚′(𝟎)𝒙 + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

                                                                                                                 (2.20) 

upon converting the resulting double integral to a single integral as discussed before. It 

remains to evaluate y′(0), and this can be obtained by substituting x = π on both sides 

of the last equation and using the boundary condition at x = π, hence, we find: 

𝝅𝒚′(𝟎) = 𝒚(𝝅) − 𝟏 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

                                                                            

⟹ 𝒚′(𝟎) =
𝟏

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

]  

Substituting y′(0) into (2.20) yields: 
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𝒚(𝒙) = 𝟏 + 𝒙 [
𝟏

𝝅
[𝝅 − 𝟐 − ∫ (𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0
]] + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
         (2.21) 

Substituting (2.18) and (2.21) into BVP, we get: 

𝑦′′(𝑥) + 𝑦(𝑥) = 𝑥 

⟹ 𝑢(𝑥) + 𝟏 +
𝒙

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

] + ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

= 𝑥   

⟹ 𝑢(𝑥) = 𝑥 − 𝟏 −
𝒙

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0

] − ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

⟹ 𝑢(𝑥) = 𝑥 − 𝟏 −
𝒙

𝝅
[𝝅 − 𝟐 − ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

− ∫(𝜋 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

𝑥

]

− ∫(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0

 

or equivalently, after performing simple calculations and adding integrals with similar 

limits: 

𝑢(𝑥) =
𝟐𝒙 − 𝝅

𝝅
− ∫

𝒕(𝒙 − 𝝅)

𝝅
𝒖(𝒕)𝒅𝒕

𝒙

𝟎

− ∫
𝒙(𝒕 − 𝝅)

𝝅
𝒖(𝒕)𝒅𝒕

𝝅

𝒙

 

Consequently, the desired Fredholm integral equation of the second kind is given by 

𝑢(𝑥) =
𝟐𝒙 − 𝝅

𝝅
− ∫ 𝑲(𝒙, 𝒕)𝒖(𝒕)𝒅𝒕

𝝅

𝟎

 

where the kernel K(x, t) is defined by: 

𝑲(𝒙, 𝒕) = {

𝒕(𝒙 − 𝝅)

𝝅
      , 𝒇𝒐𝒓 𝟎 ≤ 𝒕 ≤ 𝒙

𝒙(𝒕 − 𝝅)

𝝅
        , 𝒇𝒐𝒓 𝒙 ≤ 𝒕 ≤ 𝝅

 

 
Exercises 2.4. 
Derive the equivalent Fredholm integral equation for the following boundary value 

problems: 

y″ + 4y = sinx, 0 < x < 1, y(0) = y(1) = 0 


