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Chapter Three: Fredholm Integral Equations 

 
3.1 Introduction 

In this chapter, we shall be concerned with the nonhomogeneous Fredholm 

integral equations of the second kind of the form: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
    , 𝑎 ≤ 𝑥 ≤ 𝑏                     (3.1) 

where K(x,t) is the kernel of the integral equation, and λ is a parameter. A considerable 

amount of discussion will be directed toward the various methods and techniques that 

are used for solving this type of equation starting with the most recent methods that 

proved to be highly reliable and accurate. To do this we will naturally focus our study 

on the degenerate or separable kernels all through this chapter. The standard form of 

the degenerate or separable kernel is given by: 

𝐾(𝑥, 𝑡) = ∑ 𝑔𝑗(𝑥)ℎ𝑗(𝑡)𝑛
𝑗=1                                        (3.2) 

The expressions x − t, x + t, xt, x2 − 3xt + t2, etc. are examples of separable kernels. For 

other well-behaved non-separable kernels, we can convert them to separable in the form 

(3.2) simply by expanding these kernels using Taylor’s expansion.  

Definition (3.1) 

The kernel K(x, t) is defined to be square integrable in both x and t in the square a ≤ x 

≤ b, a ≤ t ≤ b if the following regularity condition: 

∫ ∫ 𝐾(𝑥, 𝑡)𝑑𝑥
𝑏

𝑎
𝑑𝑡

𝑏

𝑎
< ∞                                              (3.3) 

is satisfied.  

This condition gives rise to the development of the solution of the Fredholm integral 

equation (3.1). It is also convenient to state, without proof, the so-called Fredholm 

Alternative Theorem that relates the solutions of homogeneous and 

nonhomogeneous Fredholm integral equations. 

3.1.1 Fredholm Alternative Theorem 

The nonhomogeneous Fredholm integral equation (3.1) has one and only one solution 

if the only solution to the homogeneous Fredholm integral equation: 

𝑢(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
                                          (3.4) 

is the trivial solution u(x) = 0. 

We end this section by introducing the necessary condition that will guarantee a 

unique solution to the integral equation (3.11) in the interval of discussion. Considering 

(3.2), if the kernel K(x, t) is real,    continuous, and bounded in the square a ≤ x ≤ b and 

a ≤ t ≤ b, i.e. if: 

|𝐾(𝑥, 𝑡)| ≤ 𝑀   , 𝑎 ≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑎 ≤ 𝑡 ≤ 𝑏                          (3.5) 
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and if f(x) ≠ 0, and continuous in a ≤ x ≤ b, then the necessary condition that will 

guarantee that (3.1) has only a unique solution is given by: 

|𝜆|𝑀(𝑏 − 𝑎) < 1                         (3.6) 

It is important to note that a continuous solution to Fredholm integral equation may 

exist, even though the condition (3.6) is not satisfied. This may be seen by considering 

the equation: 

𝑢(𝑥) = −4 + ∫ (2𝑥 + 3𝑡)𝑢(𝑡)𝑑𝑡
1

0
           (3.7) 

In this example, λ = 1, |K(x, t)| ≤ 5 and (b − a) = 1; therefore : 

|𝜆|𝑀(𝑏 − 𝑎) = 5 ≮ 1                               (3.8) 

Accordingly, the necessary condition (3.6) fails to hold, but the integral equation (3.7) 

has an exact solution given by:  

𝑢(𝑥) = 4𝑥                                                (3.9) 

and this can be justified through direct substitution. 

In the following, we will discuss several methods that handle successfully the Fredholm 

integral equations of the second kind. 

3.2 The Adomian Decomposition Method 
Adomian developed the so-called Adomian decomposition method or simply the 

decomposition method (ADM). The method proved to be reliable and effective for a 

wide class of equations, differential and integral equations, and linear and nonlinear 

models. The method was applied mostly to ordinary and partial differential equations 

and was rarely used for integral equations.  

In the decomposition method, we usually express the solution u(x) of the integral 

equation (3.1) in a series form defined by: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                                               (3.10) 

Substituting the decomposition (3.10) into both sides of (3.1) yields: 

∑ 𝑢𝑛(𝑥)∞
𝑛=0 = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑢𝑛(𝑡)∞

𝑛=0 )𝑑𝑡
𝑏

𝑎
               (3.11) 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ =  𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
+

 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
+ 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡

𝑏

𝑎
 + ⋯                           

(3.12) 

The components u0(x) , u1(x) , u2(x) , u3(x), ... of the unknown function u(x) are 

completely determined in a recurrent manner, if we set: 

𝑢0(𝑥) = 𝑓(𝑥)                              (3.13) 

𝑢1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
     (3.14) 
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𝑢2(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
         (3.15) 

𝑢3(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢2(𝑡)𝑑𝑡
𝑏

𝑎
         (3.16) 

and so on. The above-discussed scheme for the determination of the components u0(x), 

u1(x), u2(x), u3(x), ... of the solution u(x) of Eq. (3.1) can be written recursively by: 

 

𝑢0(𝑥) = 𝑓(𝑥)                                                (3.17) 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 0     (3.18) 

In view of (3.17) and (3.18), the components u0(x) , u1(x) , u2(x) , u3(x), ... follow 

immediately. With these components determined, the solution u(x) of (3.1) is readily 

determined in a series form using the decomposition (3.10). It is important to note that 

the obtained series for u(x) converges to the exact solution in a closed form if such a 

solution exists as will be seen later. However, for concrete problems, where the exact 

solution cannot be evaluated, a truncated series ∑ 𝑢𝑛(𝑥)𝑘
𝑛=0  is usually used to 

approximate the solution u(x) and this can be used for numerical purposes. We point 

out here that a few terms of the truncated series usually provide a higher accuracy level 

of the approximate solution if compared with the existing numerical techniques.  

In the following, we discuss some examples that illustrate the decomposition method 

outlined above. 

Example 3.1. We first consider the Fredholm integral equation of the second kind 

𝑢(𝑥) =
9

10
𝒙𝟐 + ∫

𝟏

𝟐
𝒙𝟐𝒕𝟐𝒖(𝒕)𝒅𝒕

𝟏

𝟎
                          (3.19) 

It is clear that  𝑓(𝑥) =
9

10
𝒙𝟐, λ = 1, . To evaluate the components u0(x), u1(x), u2(x), ... 

of the series solution, we use the recursive scheme (3.17) and (3.18) to find: 

𝑢0(𝑥) = 𝑓(𝑥) =
9

10
𝒙𝟐                                         (3.20) 

𝑢1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
= ∫

𝟏

𝟐
𝒙𝟐𝒕𝟐(

9

10
𝒕𝟐)𝒅𝒕

𝟏

𝟎
= ∫

𝟗

𝟐𝟎
𝒙𝟐𝒕𝟒𝒅𝒕

𝟏

𝟎
=

𝟗

𝟏𝟎𝟎
𝒙𝟐   (3.21) 

𝑢2(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡
𝑏

𝑎
= ∫

𝟏

𝟐
𝒙𝟐𝒕𝟐(

9

100
𝒕𝟐)𝒅𝒕

𝟏

𝟎
= ∫

𝟗

𝟐𝟎𝟎
𝒙𝟐𝒕𝟒𝒅𝒕

𝟏

𝟎
=

𝟗

𝟏𝟎𝟎𝟎
𝒙𝟐(3.22) 

and so on. Noting that: 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯                           (3.23) 

We can easily obtain the solution in a series form given by: 

𝑢(𝑥) =
9

10
𝒙𝟐 +

𝟗

𝟏𝟎𝟎
𝒙𝟐 +

𝟗

𝟏𝟎𝟎𝟎
𝒙𝟐 + ⋯                           (3.24) 

so that the solution of (3.19) in a closed form: 

𝑢(𝑥) = 𝒙𝟐                                                              (3.25) 

follows immediately upon using the formula for the sum of the infinite geometric series. 
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Example 3.2. Consider the Fredholm integral equation: 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥 + 2𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
𝜋

0
                        (3.26) 

Proceeding as in example 3.1, we set: 

𝑢0(𝑥) = 𝑐𝑜𝑠𝑥 + 2𝑥                                                                      (3.27) 

𝑢1(𝑥) = ∫ 𝑥𝑡(𝑐𝑜𝑠𝑡 + 2𝑡)𝑑𝑡
𝜋

0
= (−2 +

2

3
𝜋3) 𝑥                           (3.28) 

𝑢2(𝑥) = ∫ 𝑥𝑡 (−2 +
2

3
𝜋3) 𝑡𝑑𝑡

𝜋

0
= (−

2

3
𝜋3 +

2

9
𝜋6) 𝑥                 (3.29) 

Consequently, the solution of (3.26) in a series form is given by 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥 + 2𝑥 + (−2 +
2

3
𝜋3) 𝑥 + (−

2

3
𝜋3 +

2

9
𝜋6) 𝑥 + (−

2

9
𝜋6 +

2

27
𝜋9) 𝑥 + ⋯                   

                                                                                                (3.30) 

 and in a closed form: 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥                                 (3.31) 

Example 3.3. We consider here the Fredholm integral equation: 

𝑢(𝑥) = 𝑒𝑥 − 1 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
1

0
                              (3.32) 

Applying the decomposition technique as discussed before, we find: 

𝑢0(𝑥) = 𝑒𝑥 − 1                           (3.33) 

𝑢1(𝑥) = ∫ 𝑡(𝑒𝑡 − 1)𝑑𝑡
1

0
=

1

2
        (3.34) 

𝑢2(𝑥) = ∫
1

2
𝑡𝑑𝑡

1

0
=

1

4
                    (3.35) 

The determination of the components (3.33)-(3.35) yields the solution of the equation 

(3.32) in a series form given by: 

𝑢(𝑥) = 𝑒𝑥 − 1 +
1

2
(1 +

1

2
+

1

4
+ ⋯ )   (3.36) 

where we can easily obtain the solution in a closed form given by: 

𝑢(𝑥) = 𝑒𝑥                    (3.37) 

Example 3.4. Solve the following Fredholm integral equation: 

𝑢(𝑥) = 1 +
1

2
∫ 𝑠𝑒𝑐2(𝑥)𝑢(𝑡)𝑑𝑡

𝜋

4
0

                              (3.38) 

Applying the decomposition technique as discussed before, we find: 

𝑢0(𝑥) = 1                                                                 (3.39) 

𝑢1(𝑥) =
1

2
∫ 𝑠𝑒𝑐2(𝑥)𝑑𝑡

𝜋

4
0

=
𝜋

8
𝑠𝑒𝑐2(𝑥)                       (3.40) 

𝑢2(𝑥) =
1

2
∫ 𝑠𝑒𝑐2(𝑥) (

𝜋

8
𝑠𝑒𝑐2(𝑡)) 𝑑𝑡

𝜋

4
0

=
𝜋

16
𝑠𝑒𝑐2(𝑥)   (3.41) 

The determination of the components (3.39)-(3.41) yields the solution of the equation 

(3.38) in a series form given by: 

𝑢(𝑥) = 1 +
𝜋

8
𝑠𝑒𝑐2(𝑥) +

𝜋

16
𝑠𝑒𝑐2(𝑥) +

𝜋

32
𝑠𝑒𝑐2(𝑥) + ⋯         (3.42) 

where we can easily obtain the solution in a closed form given by: 

𝑢(𝑥) = 1 +
𝜋

4
𝑠𝑒𝑐2(𝑥)                    (3.43) 

Exercises 3.1. Solve the following Fredholm integral equations by using the Adomian 
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decomposition method: 

1. 𝑢(𝑥) = 𝑠𝑖𝑛𝑥 − 𝑥 + ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
𝜋

2
0

 

2. 𝑢(𝑥) = 𝑒𝑥+2 − 2 ∫ 𝑒𝑥+𝑡𝑢(𝑡)𝑑𝑡
1

0
 

3. 𝑢(𝑥) = 𝑥𝑠𝑖𝑛𝑥 −
1

2
+

1

2
∫ 𝑢(𝑡)𝑑𝑡

𝜋

2
0

 

3.3. The Modified Decomposition Method 
As stated before, the Adomian decomposition method provides the solutions 

in an infinite series of components. The components uj, j ≥ 0 are easily computed if the 

inhomogeneous term f(x) in the Fredholm integral equation: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑏

𝑎

 

consists of a polynomial of one or two terms. However, if the function f(x) consists of 

a combination of two or more polynomials, trigonometric functions, hyperbolic 

functions, and others, the evaluation of the components uj, j ≥ 0 requires more work.  

The modified decomposition method depends mainly on splitting the function 

f(x) into two parts, therefore it cannot be used if the f(x) consists of only one term. The 

modified decomposition method will be briefly outlined here, 

The standard Adomian decomposition method employs the recurrence relation: 

𝑢0(𝑥) = 𝑓(𝑥)                                        

         𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 0  (3.44) 

 

where the solution u(x) is expressed by an infinite sum of components defined by: 

 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0         (3.45) 

 

The modified decomposition method presents a slight variation to the recurrence 

relation (3.44) to determine the components of u(x) in an easier and faster manner. For 

many cases, the function f(x) can be set as the sum of two partial functions, namely f1(x) 

and f2(x). In other words, we can set: 

𝑓(𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥)           (3.46) 

Because of (3.46), we introduce a qualitative change in the formation of the recurrence 

relation (3.44). The modified decomposition method identifies the zeroth component 

u0(x) by one part of f(x), namely f1(x) or f2(x). The other part of f(x) can be added to the 

component u1(x) that exists in the standard recurrence relation. The modified 

decomposition method admits the use of the modified recurrence relation: 
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𝑢0(𝑥) = 𝑓1(𝑥)                                                              

𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑏

𝑎
                                                            

         𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥1           (3.47) 

Example 3.5. Solve the Fredholm integral equation by using the modified 

decomposition method. 

𝑢(𝑥) = 3𝑥 + 𝑒4𝑥 −
1

16
(17 + 3𝑒4) + ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0

 

We first decompose f(x) given by 

𝑓(𝑥) = 3𝑥 + 𝑒4𝑥 −
1

16
(17 + 3𝑒4) 

into two parts, namely 

𝑓1(𝑥) = 3𝑥 + 𝑒4𝑥  ,    𝑓2(𝑥) =  −
1

16
(17 + 3𝑒4) 

We next use the modified recurrence formula (3.47) to obtain: 

𝑢0(𝑥) = 3𝑥 + 𝑒4𝑥                                                                                                         

𝑢1(𝑥) = −
1

16
(17 + 3𝑒4) + ∫ 𝑡(3𝑡 + 𝑒4𝑡)𝑑𝑡

1

0
= 0                                                                                      

         𝑢𝑛+1(𝑥) = ∫ 𝑡𝑢𝑛(𝑡)𝑑𝑡
𝑏1

0
= 0, 𝑛 ≥1            

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by:    𝑢(𝑥) = 3𝑥 + 𝑒4𝑥 

Example 3.6. Solve the Fredholm integral equation by using the modified 

decomposition method. 

𝑢(𝑥) =
1

1 + 𝑥2
− 2𝑠𝑖𝑛ℎ

𝜋

4
+ ∫ 𝑒tan−1 𝑡𝑢(𝑡)𝑑𝑡

1

−1

 

We first decompose f(x) given by 

𝑓(𝑥) =
1

1 + 𝑥2
− 2𝑠𝑖𝑛ℎ

𝜋

4
 

into two parts, namely 

𝑓1(𝑥) =
1

1 + 𝑥2
  ,    𝑓2(𝑥) =  −2𝑠𝑖𝑛ℎ

𝜋

4
 

We next use the modified recurrence formula (3.47) to obtain: 

𝑢0(𝑥) =
1

1 + 𝑥2
                                                                                                         

𝑢1(𝑥) = −2𝑠𝑖𝑛ℎ
𝜋

4
+ ∫ 𝑒tan−1 𝑡 (

1

1+𝑡2) 𝑑𝑡
1

−1
= 0                                     

         𝑢𝑛+1(𝑥) = ∫ 𝑒tan−1 𝑡𝑢𝑛(𝑡)𝑑𝑡
𝑏1

0
= 0, 𝑛 ≥1            

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by:    𝑢(𝑥) =
1

1+𝑥2
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Exercises 3.2. Use the modified decomposition method to solve the following Fredholm 

integral equations: 

1. 𝑢(𝑥) = 𝑠𝑖𝑛𝑥 − 𝑥 + 𝑥 ∫ 𝑡𝑢(𝑡)
𝜋

2
0

 

2. 𝑢(𝑥) = 𝑒𝑥 + 12𝑥2 + (3 + 𝑒1)𝑥 − 4 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
1

0
 

3.4 The Successive Approximations Method 
The successive approximations method or the Picard iteration method provides 

a scheme that can be used for solving initial value problems or integral equations. This 

method solves any problem by finding successive approximations to the solution by 

starting with an initial guess as u0(x), called the zeroth approximation. As will be seen, 

the zeroth approximation is any selective real-valued function that will be used in a 

recurrence in relation to determining the other approximations. The most commonly 

used values for the zeroth approximations are 0, 1, or x. Of course, other real values can 

be selected as well. Given Fredholm integral equation of the second kind:    𝑢(𝑥) =

𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
 

where u(x) is the unknown function to be determined, K(x, t) is the kernel, and λ is a 

parameter. The successive approximations method introduces the recurrence relation: 

                     u0(x) = any selective real-valued function,                                  

𝑢𝑛+1(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑏

𝑎
   , 𝑛 ≥ 0        (3.48) 

the solution is determined by using the limit: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥)                                             (3.49) 

 

3.4.1 The difference between The successive approximations method 

and the Adomian method can be summarized as follows: 

 

1. The successive approximations method gives successive approximations of the 

solution u(x), whereas the Adomian method gives successive components of the 

solution u(x). 

2. The successive approximations method admits the use of a selective real-valued 

function for the zeroth approximation u0, whereas the Adomian decomposition method 

assigns all terms that are not inside the integral sign for the zeroth component u0(x). 

Recall that this assignment was modified when using the modified decomposition 

method. 

3. The successive approximations method gives the exact solution, if it exists, by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) 
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However, the Adomian decomposition method gives the solution as infinite series of 

components by: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)

∞

𝑛=0

 

This series solution converges rapidly to the exact solution if such a solution exists. 

The successive approximations method or iteration method will be illustrated by 

studying the following examples. 

Example 3.7. Solve the Fredholm integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

0

 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛+1(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡𝑢𝑛(𝑡)𝑑𝑡

1

0

   , 𝑛 ≥ 0 

Therefore, we obtain: 

𝑢1(𝑥) = 𝑥 + 𝑒𝑥                                                                    

𝑢2(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡(𝑡 + 𝑒𝑡)𝑑𝑡

1

0

= 𝑒𝑥 −
1

3
𝑥            

𝑢3(𝑥) = 𝑥 + 𝑒𝑥 − ∫ 𝑥𝑡 (𝑒𝑡 −
1

3
𝑡) 𝑑𝑡

1

0

= 𝑒𝑥 +
1

9
𝑥     

⋮ 

𝑢𝑛+1(𝑥) = 𝑒𝑥 +
(−1)𝑛

3𝑛
𝑥                                              

Consequently, the solution u(x) is given by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = lim
𝑛→∞

(𝑒𝑥 +
(−1)𝑛

3𝑛
𝑥) = 𝑒𝑥 

Example 3.8. Solve the Fredholm integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

−1
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For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 𝑥 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛+1(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡𝑢𝑛(𝑡)𝑑𝑡

1

−1

   , 𝑛 ≥ 0 

Therefore, we obtain: 

𝑢1(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡2𝑑𝑡

1

−1

  = 𝑥 +
2

3
𝜆𝑥                                                                                        

𝑢2(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡 (𝑡 +
2

3
𝜆𝑡) 𝑑𝑡

1

−1

  = 𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥                                                

𝑢3(𝑥) = 𝑥 + 𝜆 ∫ 𝑥𝑡 (𝑡 +
2

3
𝜆𝑥𝑡 + (

2

3
)

2

𝜆2𝑡) 𝑑𝑡

1

−1

  = 𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥 + (
2

3
)

3

𝜆3𝑥 

⋮ 

𝑢𝑛+1(𝑥) = 𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥 + (
2

3
)

3

𝜆3𝑥 + ⋯ + (
2

3
)

𝑛+1

𝜆𝑛+1𝑥                                

The solution u(x) is given by: 

             𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥)

= lim
𝑛→∞

(𝑥 +
2

3
𝜆𝑥 + (

2

3
)

2

𝜆2𝑥 + (
2

3
)

3

𝜆3𝑥 + ⋯ + (
2

3
)

𝑛+1

𝜆𝑛+1𝑥)     

=
3𝑥

3 − 2𝜆
   , 0 < 𝜆 <

3

2
 

obtained upon using the infinite geometric series for the right side of the above 

equation. 

Example 3.9. Solve the Fredholm integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛𝑥 ∫ 𝑐𝑜𝑠𝑡𝑢(𝑡)𝑑𝑡

𝜋
2

0

 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0 

We next use the iteration formula 

𝑢𝑛+1(𝑥) = 𝑠𝑖𝑛𝑥 + 𝑠𝑖𝑛𝑥 ∫ 𝑐𝑜𝑠𝑡𝑢𝑛(𝑡)𝑑𝑡

𝜋
2

0

   , 𝑛 ≥ 0 

Therefore, we obtain: 
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𝑢1(𝑥) = 𝑠𝑖𝑛𝑥          ,       𝑢2(𝑥) =
3

2
𝑠𝑖𝑛𝑥 

𝑢3(𝑥) =
7

4
𝑠𝑖𝑛𝑥     .        𝑢4(𝑥) =

15

8
𝑠𝑖𝑛𝑥 

⋮ 

𝑢𝑛+1(𝑥) =
2𝑛+1 − 1

2𝑛
𝑠𝑖𝑛𝑥 = (2 −

1

2𝑛
) 𝑠𝑖𝑛𝑥 

The solution u(x) is given by: 

             𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = lim
𝑛→∞

(2 −
1

2𝑛
) 𝑠𝑖𝑛𝑥 = 2𝑠𝑖𝑛𝑥 

Exercises 3.3. Use the successive approximations method to solve the following 

Fredholm integral equations: 

1. 𝑢(𝑥) = 1 + 𝑥3 + 𝜆 ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡
1

−1
 

2. 𝑢(𝑥) = 𝑥 + sec2 𝑥 − ∫ 𝑥𝑢(𝑡)𝑑𝑡
𝜋

4
0

 

 

3.5 The Series Solution Method 
A real function u(x) is called analytic if it has derivatives of all orders such 

that the Taylor series at any point b in its domain: 

𝑢(𝑥) = ∑
𝑢𝑛(𝑏)

𝑛!
(𝑥 − 𝑏)𝑛∞

𝑛=0                      (3.50) 

converges to u(x) in a neighborhood of b. For simplicity, the generic form of 

Taylor series at x = 0 can be written as: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0                                  (3.51) 

The series solution method that stems mainly from the Taylor series for analytic 

functions, will be used for solving Fredholm integral equations. We will assume that 

the solution u(x) of the Fredholm integral equations: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
     (3.52) 

is analytic, and therefore possesses a Taylor series of the form given in (3.52), where 

the coefficients an will be determined recurrently. Substituting (3.51) into both sides of 

(3.52) gives: 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 )𝑑𝑡
𝑏

𝑎
                                              (3.53) 

or for simplicity we use 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ )𝑑𝑡
𝑏

𝑎
      (3.54) 

where T (f(x)) is the Taylor series for f(x). The integral equation (3.52) will be converted 

to a traditional integral in (3.53) or (3.54) where instead of integrating the unknown 

function u(x), terms of the form tn, n≥ 0 will be integrated. Notice that because we are 

seeking a series solution, then if f(x) includes elementary functions such as 
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trigonometric functions, exponential functions, etc., Taylor expansions for functions 

involved in f(x) should be used. 

We first integrate the right side of the integral in (3.53) or (3.54) and collect the 

coefficients of like powers of x. We next equate the coefficients of like powers of x in 

both sides of the resulting equation to obtain a recurrence relation in aj, j ≥ 0. Solving 

the recurrence relation will lead to a complete determination of the coefficients aj, j ≥0. 

Having determined the coefficients aj, j ≥0, the series solution follows immediately 

upon substituting the derived coefficients into (3.51). The exact solution may be 

obtained if such an exact solution exists. If an exact solution is not obtainable, then the 

obtained series can be used for numerical purposes. In this case, the more terms we 

evaluate, the higher the accuracy level we achieve. It is worth noting that using the 

series solution method for solving Fredholm integral equations gives exact solutions if 

the solution u(x) is a polynomial. However, if the solution is any other elementary 

function such as sin x, ex, etc, the series method gives the exact solution after rounding 

a few of the coefficients aj, j ≥0. This will be illustrated by studying the following 

examples. 

Example 3.10. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = (𝑥 + 1)2 + ∫(𝑥𝑡 + 𝑥2𝑡2)𝑢(𝑡)𝑑𝑡

1

−1

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= (𝑥 + 1)2 + ∫(𝑥𝑡 + 𝑥2𝑡2) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

−1

 

Evaluating the integral on the right side gives: 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥2 + ⋯

= 1 + (2 +
2

3
𝑎1 +

2

5
𝑎3 +

2

7
𝑎5 +

2

9
𝑎7) 𝑥

+ (1 +
2

3
𝑎0 +

2

5
𝑎2 +

2

7
𝑎4 +

2

9
𝑎6 +

2

11
𝑎8) 𝑥2 

Equating the coefficients of like powers of x on both sides gives: 

𝑎0 = 1, 𝑎1 = 6, 𝑎2 =
25

9
  , 𝑎𝑛 = 0, 𝑛 ≥ 3 

The exact solution is given by: 
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𝑢(𝑥) = 1 + 6𝑥 +
25

9
𝑥2 

Example 3.11. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = 𝑥2 − 𝑥3 + ∫(1 + 𝑥𝑡)𝑢(𝑡)𝑑𝑡

1

0

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 𝑥2 − 𝑥3 + ∫(1 + 𝑥𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

0

 

Evaluating the integral on the right side, and equating the coefficients of like powers of 

x on both sides of the resulting equation we find 

a0 = 
−29

60
 , a1 = 

−1

6
 ,  a2 = 1, a3 = −1, an = 0, n≥ 4.  

Consequently, the exact solution is given by: 

𝑢(𝑥) =
−29

60
−

1

6
𝑥 + 𝑥2 − 𝑥3 

 

Example 3.12. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = −𝑥4 + ∫(𝑥𝑡2 − 𝑥2𝑡)𝑢(𝑡)𝑑𝑡

1

−1

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

== −𝑥4 + ∫(𝑥𝑡2 − 𝑥2𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

−1

 

Evaluating the integral on the right side, and equating the coefficients of like powers of 

x on both sides of the resulting equation, we find: 

a0 = 0 , a1 = 
−30

133
 ,  a2 = 

20

133
, a3 = 0, a4= −1, an = 0, n≥ 5.  

Consequently, the exact solution is given by: 

𝑢(𝑥) =
−30

133
𝑥 +

20

133
𝑥2 − 𝑥4 
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Example 3.13. Solve the Fredholm integral equation by using the series solution 

method: 

𝑢(𝑥) = −1 + cos 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡

𝜋
2

0

 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

leads to, 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= −1 + cos 𝑥 + ∫ (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝜋
2

0

 

Evaluating the integral on the right side, and equating the coefficients of like powers of 

x on both sides of the resulting equation we find 

a0 = 1 ,𝑎2𝑗+1 = 0, 𝑎2𝑗+2 =
(−1)𝑗

(2𝑗)!
     , 𝑗 ≥ 0  

Consequently, the exact solution is given by: 

𝑢(𝑥) = 𝑐𝑜𝑠𝑥 

 

Exercises 3.4. Use the series solution method to solve the following Fredholm integral 

equations: 

1. 𝑢(𝑥) = 5𝑥 + ∫ (1 − 𝑥𝑡)𝑢(𝑡)𝑑𝑡
1

−1
 

2. 𝑢(𝑥) = sec2 𝑥 − 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝜋

4
0

 

3.6 The Direct Computation Method 
In this section, the direct computation method will be applied to solve the 

Fredholm integral equations. The method approaches Fredholm integral equations 

in a direct manner and gives the solution in an exact form and not in a series form. It is 

important to point out that this method will be applied for the degenerate or separable 

kernels of the form: 

𝐾(𝑥, 𝑡) = ∑ 𝑔𝑘(𝑥)ℎ𝑘(𝑡)𝑛
𝑘=1                               (3.55) 

Examples of separable kernels are x − t, xt, x2 − t2, xt2 + x2t, etc. 

The direct computation method can be applied as follows: 

1. We first substitute (3.55) into the Fredholm integral equation of the form: 

𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡     
𝑏

𝑎
                  (3.56) 

2. This substitution gives: 
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𝑢(𝑥) = 𝑓(𝑥) + 𝑔1(𝑥) ∫ ℎ1(𝑡)𝑢(𝑡)𝑑𝑡 

𝑏

𝑎

+ 𝑔2(𝑥) ∫ ℎ2(𝑡)𝑢(𝑡)𝑑𝑡 

𝑏

𝑎

+ ⋯ 

             +𝑔𝑛(𝑥) ∫ ℎ𝑛(𝑡)𝑢(𝑡)𝑑𝑡          
𝑏

𝑎
                   (3.57) 

 

3. Each integral at the right side depends only on the variable t with constant limits 

of integration for t. This means that each integral is equivalent to a constant. 

Based on this, Equation (3.57) becomes: 

𝑢(𝑥) = 𝑓(𝑥) + 𝛼1𝑔1(𝑥) + 𝛼2𝑔2(𝑥) + ⋯ + 𝛼𝑛𝑔𝑛(𝑥)       (3.58) 

Where   

𝛼𝑖 = ∫ ℎ𝑖(𝑡)𝑢(𝑡)𝑑𝑡 
𝑏

𝑎
   1 ≤ 𝑖 ≤ 𝑛                                    (3.59) 

4. Substituting (3.58) into (3.59) gives a system of n algebraic equations that can 

be solved to determine the constants αi , 1 ≤ i ≤ n. Using the obtained numerical 

values of αi into (3.59), the solution u(x) of the Fredholm integral equation (3.56) 

is readily obtained. 

Example 3.14 Solve the Fredholm integral equation by using the direct computation 

method        𝑢(𝑥) = 3𝑥 + 3𝑥2 +
𝟏

𝟐
∫ 𝒙𝟐𝒕𝒖(𝒕)𝒅𝒕

𝟏

𝟎
                                    (3.60) 

The kernel K(x, t) = x2t is separable. Consequently, we rewrite (3.60) as: 

𝑢(𝑥) = 3𝑥 + 3𝑥2 +
𝟏

𝟐
𝒙𝟐 ∫ 𝒕𝒖(𝒕)𝒅𝒕

𝟏

𝟎
                              (3.61) 

The integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, Equation 

(3.61) can be rewritten as: 

𝑢(𝑥) = 3𝑥 + 3𝑥2 +
𝟏

𝟐
𝜶𝒙𝟐                               (3.62) 

Where                 𝜶 = ∫ 𝒕𝒖(𝒕)𝒅𝒕
𝟏

𝟎
                                                (3.63) 

To determine α, we substitute (3. 62) into (3.63) to obtain: 

𝜶 = ∫ 𝒕 (3𝑡 + 3𝑡2 +
𝟏

𝟐
𝜶𝒕𝟐) 𝒅𝒕

𝟏

𝟎
                      (3.64) 

Integrating the right side of (3.64) yields: 

𝜶 =
7

4
+

1

8
𝛼 

that gives       𝜶 = 2 

Substituting 𝜶 = 2 into (3.62) leads to the exact solution:  u(x) = 3x + 4x2 

Example 3.15  Solve the Fredholm integral equation by using the direct computation 

method    

𝑢(𝑥) =
1

3
𝑥 + sec 𝑥 tan 𝑥 −

1

3
𝑥 ∫ 𝑢(𝑡)𝑑𝑡

𝜋
3⁄

0
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The integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, we can 

rewrite the above equation as: 

𝑢(𝑥) =
1

3
𝑥 + sec 𝑥 tan 𝑥 −

1

3
𝛼𝑥 

Where  𝛼 = ∫ 𝑢(𝑡)𝑑𝑡
𝜋

3⁄

0
= ∫ (

1

3
𝑡 + sec 𝑡 tan 𝑡 −

1

3
𝛼𝑡) 𝑑𝑡

𝜋
3⁄

0
= 1 +

1

54
𝜋2 −

1

54
𝛼𝜋2 

that gives α = 1. Therefore, the exact solution is:    𝑢(𝑥) = sec 𝑥 tan 𝑥 

 

Example 3.16  Solve the Fredholm integral equation by using the direct computation 

method    

𝑢(𝑥) = 11𝑥 + 10𝑥2 + 𝑥3 − ∫(30𝑥𝑡2 + 20𝑥2𝑡)𝑢(𝑡)𝑑𝑡

1

0

 

The kernel K(x, t) = 30xt2 + 20x2t is separable. Consequently, we rewrite the above 

equation as: 

𝑢(𝑥) = 11𝑥 + 10𝑥2 + 𝑥3 − 30𝑥 ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

0

− 20𝑥2 ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0

 

Each integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, the above 

the equation can be rewritten as: 

𝑢(𝑥) = 11𝑥 + 10𝑥2 + 𝑥3 − 30𝛼𝑥 − 20𝛽𝑥2=(11 − 30α)x + (10 − 20β)x2 + x3, 

Where 𝛼 = ∫ 𝑡2𝑢(𝑡)𝑑𝑡
1

0
 and 𝛽 = ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0
 

And then, we have: 

𝛼 = ∫ 𝑡2[(11 −  30𝛼)𝑡 + (10 −  20𝛽)𝑡2  +  𝑡3]𝑑𝑡

1

0

=
59

12
−

15

2
𝛼 − 4𝛽 

𝛽 = ∫ 𝑡[(11 −  30𝛼)𝑡 + (10 −  20𝛽)𝑡2  +  𝑡3]𝑑𝑡

1

0

=
191

30
− 10𝛼 − 5𝛽 

Solving this system of algebraic equations gives: 

𝛼 =
11

30
  , 𝛽 =

9

20
 

the exact solution is:  u(x) = x2 + x3. 

 

Example 3.17  Solve the Fredholm integral equation by using the direct computation 

method    

𝑢(𝑥) = 4 + 45𝑥 + 26𝑥2 − ∫(1 + 30𝑥𝑡2 + 12𝑥2𝑡)𝑢(𝑡)𝑑𝑡

1

0
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The kernel K(x, t) = 1+30xt2+12x2t is separable. Consequently, we rewrite the above 

equation as: 

𝑢(𝑥) = 4 + 45𝑥 + 26𝑥2 − ∫ 𝑢(𝑡)𝑑𝑡

1

0

− 30𝑥 ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

0

− 12𝑥2 ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0

 

Each integral at the right side is equivalent to a constant because it depends only on 

functions of the variable t with constant limits of integration. Consequently, the above 

an equation can be rewritten as: 

u(x) = (4 − α) + (45 − 30β)x + (26 − 12γ)x2 

where   𝛼 = ∫ 𝑢(𝑡)𝑑𝑡
1

0
  , 𝛽 = ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

0
  and  𝛾 = ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

0
. 

And then, we have: 

𝛼 = ∫((4 −  𝛼)  + (45 −  30𝛽)𝑡 + (26 −  12𝛾)𝑡2)𝑑𝑡

1

0

=
211

6
− 𝛼 − 15𝛽 − 4𝛾 

𝛽 = ∫ 𝑡2((4 −  𝛼)  + (45 −  30𝛽)𝑡 +  (26 −  12𝛾)𝑡2)𝑑𝑡

1

0

      

=
1067

60
−

1

3
𝛼 −

15

2
𝛽 −

12

5
𝛾   

𝛾 = ∫ 𝑡((4 −  𝛼)  + (45 −  30𝛽)𝑡 + (26 −  12𝛾)𝑡2)𝑑𝑡

1

0

=
47

2
−

1

2
𝛼 − 10𝛽 − 3𝛾 

Solving this system of algebraic equations gives: 

𝛼 = 3, 𝛽 =
43

30
  𝑎𝑛𝑑  𝛾 =

23

12
   , and the exact solution is : u(x) = 1+2x+ 3x2 

Exercises 3.5. Use the direct computation method to solve the following Fredholm 

integral equations: 

1. 𝑢(𝑥) = 1 + 9𝑥 + 2𝑥2 + 𝑥3 − ∫ (20𝑥𝑡 + 10𝑥2𝑡2)𝑢(𝑡)𝑑𝑡
1

0
 

2. 𝑢(𝑥) = (
2

√3
− 1) 𝑥 + sec 𝑥 tan 𝑥 − ∫ 𝑥𝑢(𝑡)𝑑𝑡

𝜋
6⁄

0
 


