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Chapter Four: Volterra Integral Equations 

 

Volterra integral equations arise in many scientific applications such as population 

dynamics, the spread of epidemics, and semiconductor devices. It was also shown in 

chapter two that Volterra integral equations can be derived from initial value problems. 

We will study Volterra integral equations of the second kind given:  

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
              (4.1) 

The unknown function u(x), which will be determined, occurs inside and outside 

the integral sign. The kernel K(x, t) and the function f(x) are given real-valued functions, 

and λ is a parameter. In what follows we will present the methods that will be used. 

 

4.1 The Adomian Decomposition Method 

 

The Adomian decomposition method consists of decomposing the unknown 

function u(x) of any equation into a sum of an infinite number of components defined by 

the decomposition series: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                 (4.2) 

where the components un(x), n ≥ 0 are to be determined recursively. The decomposition 

method concerns itself with finding the components u0, u1, u2, . . . individually. The 

determination of these components can be achieved easily through a recurrence relation 

that usually involves simple integrals that can be easily evaluated. To establish the 

recurrence relation, we substitute (4.2) into the Volterra 

integral equation (4.1) to obtain: 

∑ 𝑢𝑛(𝑥)∞
𝑛=0 = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑢𝑛(𝑡)∞

𝑛=0 )𝑑𝑡
𝑥

𝑎
              (4.3) 

The zeroth component u0(x) is identified by all terms that are not included under the 

integral sign. Consequently, the components uj(x), j ≥ 1 of the unknown function u(x) are 

completely determined by setting the recurrence 

relation: 

𝑢0(𝑥) = 𝑓(𝑥)                                                                 (4.4) 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
   , 𝑛 ≥ 0                      (4.5) 

 

 

Example 4.1. Solve the following Volterra integral equation: 
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𝑢(𝑥) = 1 − ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                (4.6) 

We notice that f(x) = 1, λ = −1,K(x, t) = 1. Recall that the solution u(x) is assumed to have 

a series form given in (4.2). Substituting the decomposition series (4.2) into both sides of 

(4.6) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 1 − ∫ (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

We identify the zeroth component by all terms that are not included under the integral 

sign. Therefore, we obtain the following recurrence relation: 

𝑢0(𝑥) = 1                                                          

𝑢1(𝑥) = − ∫ 𝑢0(𝑡)𝑑𝑡

𝑥

0

== − ∫ 1𝑑𝑡

𝑥

0

= −𝑥 

𝑢2(𝑥) = − ∫ 𝑢1(𝑡)𝑑𝑡

𝑥

0

= ∫ 𝑡𝑑𝑡

𝑥

0

=
1

2!
𝑥2           

𝑢3(𝑥) = − ∫ 𝑢2(𝑡)𝑑𝑡

𝑥

0

= − ∫ 𝑡2𝑑𝑡

𝑥

0

= −
1

3!
𝑥3  

𝑢4(𝑥) = − ∫ 𝑢3(𝑡)𝑑𝑡

𝑥

0

= ∫ 𝑡3𝑑𝑡

𝑥

0

=
1

4!
𝑥4           

and so on. Using (4.2) gives the series solution: 

𝑢(𝑥) = 1 − 𝑥 +
1

2!
𝑥2−

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯ 

that converges to the closed form solution: 

𝑢(𝑥) = 𝑒−𝑥 

Example 4.2. Solve the following Volterra integral equation: 

𝑢(𝑥) = 1 + ∫ (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡
𝑥

0
                                (4.7) 

We notice that f(x) = 1, λ = 1,K(x, t) = t − x. Substituting the decomposition series (4.2) 

into both sides of (4.7) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 1 + ∫(𝑡 − 𝑥) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 1 + ∫(𝑡 − 𝑥)(𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ )𝑑𝑡

𝑥

0
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Proceeding as before we set the following recurrence relation: 

𝑢0(𝑥) = 1                                                 

𝑢𝑘(𝑥) = ∫(𝑡 − 𝑥)𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

that gives 

𝑢0(𝑥) = 1                                                                                            

𝑢1(𝑥) = ∫(𝑡 − 𝑥)𝑢0(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥)𝑑𝑡

𝑥

0

=  −
1

2!
𝑥2               

𝑢2(𝑥) = ∫(𝑡 − 𝑥)𝑢1(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥) (−
1

2!
𝑡2) 𝑑𝑡

𝑥

0

=  
1

4!
𝑥4 

𝑢3(𝑥) = ∫(𝑡 − 𝑥)𝑢2(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥) (
1

4!
𝑡4) 𝑑𝑡

𝑥

0

=  −
1

6!
𝑥6 

𝑢4(𝑥) = ∫(𝑡 − 𝑥)𝑢3(𝑡)𝑑𝑡

𝑥

0

 = ∫(𝑡 − 𝑥) (−
1

6!
𝑡6) 𝑑𝑡

𝑥

0

=  
1

8!
𝑥8 

and so on. The solution in a series form is given by: 

𝑢(𝑥) = 1 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 +

1

8!
𝑥8 + ⋯ 

and in a closed form by: 

𝑢(𝑥) = cos 𝑥 

obtained upon using the Taylor expansion for cos x. 

Example 4.3. Solve the following Volterra integral equation: 

𝑢(𝑥) = 1 − 𝑥 −
1

2
𝑥2 − ∫ (𝑡 − 𝑥)𝑢(𝑡)𝑑𝑡

𝑥

0
                                (4.8) 

We notice that f(x) = 1−𝑥 −
1

2
𝑥2, λ = -1 , K(x, t) = t − x. Substituting the decomposition 

series (4.2) into both sides of (4.8) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 1 − 𝑥 −
1

2
𝑥2 − ∫(𝑡 − 𝑥) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯

= 1 − 𝑥 −
1

2
𝑥2 − ∫(𝑡 − 𝑥)(𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ )𝑑𝑡

𝑥

0

 

This allows us to set the following recurrence relation: 

𝑢0(𝑥) = 1 − 𝑥 −
1

2
𝑥2                             
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𝑢𝑘(𝑥) = ∫(𝑡 − 𝑥)𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

that gives: 

𝑢0(𝑥) = 1 − 𝑥 −
1

2
𝑥2                             

𝑢1(𝑥) = ∫(𝑡 − 𝑥)𝑢0(𝑡)𝑑𝑡

𝑥

0

= ∫(𝑡 − 𝑥) (1 − 𝑡 −
1

2
𝑡2 ) 𝑑𝑡

𝑥

0

=
1

2!
𝑥2 −   

1

3!
𝑥3 −

1

4!
𝑥4 

𝑢2(𝑥) = ∫(𝑡 − 𝑥)𝑢1(𝑡)𝑑𝑡

𝑥

0

= ∫(𝑡 − 𝑥) (
1

2!
𝑡2 −  

1

3!
𝑡3 −

1

4!
𝑡4 ) 𝑑𝑡

𝑥

0

  

                           =
1

4!
𝑥4 −   

1

5!
𝑥5 −

1

6!
𝑥6      

𝑢3(𝑥) = ∫(𝑡 − 𝑥)𝑢2(𝑡)𝑑𝑡

𝑥

0

= ∫(𝑡 − 𝑥) (
1

4!
𝑡4 −  

1

5!
𝑡5 −

1

6!
𝑡6 ) 𝑑𝑡

𝑥

0

  

                           =
1

6!
𝑥6 −   

1

7!
𝑥7 −

1

8!
𝑥8      

and so on. The solution in a series form is given by: 

𝑢(𝑥) = 1 − 𝑥 −
1

2
𝑥2 +

1

2!
𝑥2 −  

1

3!
𝑥3 −

1

4!
𝑥4 +

1

4!
𝑥4 −  

1

5!
𝑥5 −

1

6!
𝑥6 + ⋯ 

= 1 − (𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 + ⋯ ) 

and in a closed form by: 

𝑢(𝑥) = 1 − sinh 𝑥 

obtained upon using the Taylor expansion for sinh x. 

Example 4.4. Solve the following Volterra integral equation: 

𝑢(𝑥) = 5𝑥3 − 𝑥5 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
                                (4.9) 

We notice that f(x) = 5𝑥3 − 𝑥5, λ = 1 , K(x, t) = t. Substituting the decomposition series 

(4.2) into both sides of (4.9) gives: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 5𝑥3 − 𝑥5 + ∫ 𝑡 (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

or equivalently 

𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯ = 5𝑥3 − 𝑥5 − ∫ 𝑡(𝑢0(𝑡) + 𝑢1(𝑡) + 𝑢2(𝑡) + ⋯ )𝑑𝑡

𝑥

0

 

This allows us to set the following recurrence relation: 

𝑢0(𝑥) = 5𝑥3 − 𝑥5                           
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𝑢𝑘(𝑥) = ∫ 𝑡𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

that gives: 

𝑢0(𝑥) = 5𝑥3 − 𝑥5                           

𝑢1(𝑥) = ∫ 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

 = ∫ 𝑡(5𝑡3 − 𝑡5)𝑑𝑡

𝑥

0

= 𝑥5 −
1

7
𝑥7 

𝑢2(𝑥) = ∫ 𝑡𝑢1(𝑡)𝑑𝑡

𝑥

0

 = ∫ 𝑡 (𝑡5 −
1

7
𝑡7) 𝑑𝑡

𝑥

0

=
1

7
𝑥7 −

1

63
𝑥9 

𝑢3(𝑥) = ∫ 𝑡𝑢2(𝑡)𝑑𝑡

𝑥

0

 = ∫ 𝑡 (
1

7
𝑡7 −

1

63
𝑡9) 𝑑𝑡

𝑥

0

=
1

63
𝑥9 −

1

693
𝑥11 

The solution in a series form is given by: 

𝑢(𝑥) = (5𝑥3 − 𝑥5) + (𝑥5 −
1

7
𝑥7) + (

1

7
𝑥7 −

1

63
𝑥9) + (

1

63
𝑥9 −

1

693
𝑥11) + ⋯ 

We can easily notice the appearance of identical terms with opposite signs. Such terms 

are called noise terms which will be discussed later. Canceling the identical terms with 

opposite signs gives the exact solution: 

𝑢(𝑥) = 5𝑥3 

Example 4.5. We finally solve the Volterra integral equation: 

𝑢(𝑥) = 2 +
1

3
∫ 𝑥𝑡3𝑢(𝑡)𝑑𝑡

𝑥

0
                   (4.10) 

Proceeding as before, we set the recurrence relation: 

𝑢0(𝑥) = 2                                               

𝑢𝑘(𝑥) =
1

3
∫ 𝑥𝑡3𝑢𝑘−1(𝑡)𝑑𝑡

𝑥

0

  , 𝑘 ≥ 1 

This in turn gives: 

𝑢0(𝑥) = 2                           

𝑢1(𝑥) =
1

3
∫ 𝑥𝑡3𝑢0(𝑡)𝑑𝑡

𝑥

0

=
2

3
∫ 𝑥𝑡3𝑑𝑡

𝑥

0

=
1

6
𝑥5 

𝑢2(𝑥) =
1

3
∫ 𝑥𝑡3𝑢1(𝑡)𝑑𝑡

𝑥

0

=
1

3
∫ 𝑥𝑡3 (

1

6
𝑡5) 𝑑𝑡

𝑥

0

=
1

162
𝑥10 

𝑢3(𝑥) =
1

3
∫ 𝑥𝑡3𝑢2(𝑡)𝑑𝑡

𝑥

0

=
1

3
∫ 𝑥𝑡3 (

1

162
𝑡10) 𝑑𝑡

𝑥

0

=
1

6804
𝑥15 

and so on. The solution in a series form is given by: 
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𝑢(𝑥) = 2 +
1

6
𝑥5 +

1

162
𝑥10 +

1

6804
𝑥15 + ⋯ 

It seems that an exact solution is not obtainable. The obtained series solution can be used 

for numerical purposes. The more components that we determine the higher the accuracy 

level that we can achieve. 

Exercises 4.1. solve the following Volterra integral equations by using the Adomian 

decomposition method: 

1. 𝑢(𝑥) = 6𝑥 − 3𝑥2 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 1 + 𝑥2 + ∫ (𝑥 − 𝑡 + 1)2𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.2 The Modified Decomposition Method 
To give a clear description of the technique, we recall that the standard Adomian 

decomposition method admits the use of the recurrence relation: 

𝑢0(𝑥) = 𝑓(𝑥)                                                                                                                                      

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
   , 𝑛 ≥ 0        (4.11)                     

where the solution u(x) is expressed by an infinite sum of components defined before by: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                          (4.12) 

In view of (4.11), the components un(x), n≥ 0 can be easily evaluated. The modified 

decomposition method introduces a slight variation to the recurrence relation (4.11) that 

will lead to the determination of the components of u(x) in an easier and faster manner. 

For many cases, the function f(x) can be set as the sum of two partial functions, namely 

f1(x) and f2(x). In other words, we can set 

f(x) = f1(x) + f2(x)                                          (4.13) 

In view of (4.13), we introduce a qualitative change in the formation of the recurrence 

relation (4.11). To minimize the size of calculations, we identify the zeroth component 

u0(x) by one part of f(x), namely f1(x) or f2(x). The other part of f(x) can be added to the 

component u1(x) among other terms. In other words, the modified decomposition method 

introduces the modified recurrence relation: 

𝑢0(𝑥) = 𝑓1(𝑥)                                                                     

𝑢1(𝑥) = 𝑓2(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡
𝑥

𝑎
                                                                                           

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
   , 𝑛 ≥ 1                   (4.14)                     

Example 4.6. Solve the Volterra integral equation by using the modified decomposition 

method: 

𝑢(𝑥) = sin 𝑥 + (𝑒1 − 𝑒cos 𝑥) − ∫ 𝑒cos 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
              (4.15) 

We first split f(x) given by: 

𝑓(𝑥) = sin 𝑥 + (𝑒1 − 𝑒cos 𝑥) 

into two parts, namely 



 

Chapter Four: Volterra Integral Equations 
39 

 

 

𝑓1(𝑥) = sin 𝑥       𝑎𝑛𝑑        𝑓2(𝑥) = (𝑒1 − 𝑒cos 𝑥) 

We next use the modified recurrence formula (4.14) to obtain: 

𝑢0(𝑥) = 𝑓1(𝑥) = sin 𝑥                                                                                                              

𝑢1(𝑥) = (𝑒1 − 𝑒cos 𝑥) − ∫ 𝑒cos 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= (𝑒1 − 𝑒cos 𝑥) − ∫ 𝑒cos 𝑡(sin 𝑡)𝑑𝑡

𝑥

0

= 0 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑥

𝑎

= 0, 𝑛 ≥ 1                                                                  

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by: 

𝑢(𝑥) = sin 𝑥 

Example 4.7. Solve the Volterra integral equation by using the modified decomposition 

method: 

𝑢(𝑥) = sec 𝑥 tan 𝑥 + (𝑒sec 𝑥 − 𝑒1) − ∫ 𝑒sec 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
   , 𝑥 <

𝜋

2
              (4.16) 

Proceeding as before we split f(x) into two parts: 

𝑓1(𝑥) = sec 𝑥 tan 𝑥       𝑎𝑛𝑑        𝑓2(𝑥) = (𝑒sec 𝑥 − 𝑒1) 

We next use the modified recurrence formula (4.14) to obtain: 

𝑢0(𝑥) = 𝑓1(𝑥) = sec 𝑥 tan 𝑥                                                                                                       

𝑢1(𝑥) = (𝑒sec 𝑥 − 𝑒1) − ∫ 𝑒sec 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= (𝑒sec 𝑥 − 𝑒1) − ∫ 𝑒sec 𝑡(sec 𝑡 tan 𝑡)𝑑𝑡

𝑥

0

= 0 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑥

𝑎

= 0, 𝑛 ≥ 1                                                                  

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by: 

𝑢(𝑥) = sec 𝑥 tan 𝑥 

Example 4.8. Solve the Volterra integral equation by using the modified decomposition 

method: 

𝑢(𝑥) = 1 + 𝑥2 + cos 𝑥 − 𝑥 −
1

3
𝑥3 − sin 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
                   (4.17) 

Proceeding as before we split f(x) into two parts: 

𝑓1(𝑥) = 1 + 𝑥2 + cos 𝑥       𝑎𝑛𝑑        𝑓2(𝑥) = − (𝑥 +
1

3
𝑥3 + sin 𝑥) 

We next use the modified recurrence formula (4.14) to obtain: 

𝑢0(𝑥) = 𝑓1(𝑥) = 1 + 𝑥2 + cos 𝑥                                                                                                 
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𝑢1(𝑥) = − (𝑥 +
1

3
𝑥3 + sin 𝑥) + ∫ 𝑢0(𝑡)𝑑𝑡

𝑥

0

= − (𝑥 +
1

3
𝑥3 + sin 𝑥) + ∫(1 + 𝑡2 + cos 𝑡)𝑑𝑡

𝑥

0

= 0 

𝑢𝑛+1(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑥

𝑎

= 0, 𝑛 ≥ 1                                                                  

It is obvious that each component of uj, j ≥ 1 is zero. This in turn gives the exact solution 

by: 

𝑢(𝑥) = 1 + 𝑥2 + cos 𝑥 

Exercises 4.2. Use the modified decomposition method to solve the following Volterra 

integral equations: 

1. 𝑢(𝑥) = sinh 𝑥 + cosh 𝑥 − 1 − ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 2𝑥 + (1 − 𝑒−𝑥2
) − ∫ 𝑒−𝑥2+𝑡2

𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.3 The Successive Approximations Method 
 

The successive approximations method also called the Picard iteration method 

provides a scheme that can be used for solving initial value problems or integral equations. 

This method solves any problem by finding successive approximations 

to the solution by starting with an initial guess, called the zeroth approximation. As will 

be seen, the zeroth approximation is any selective real-valued function that will be used 

in a recurrence in relation to determining the other approximations. The successive 

approximations method introduces the recurrence relation: 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡
𝑥

𝑎
       , 𝑛 ≥ 1          (4.18) 

We always start with an initial guess for u0(x), mostly we select 0, 1, x for u0(x), and by 

using (4.18), several successive approximations uk , k≥ 1 will be determined as: 

𝑢1(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

𝑎

        

𝑢2(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢1(𝑡)𝑑𝑡

𝑥

𝑎

    

⋮ 

𝑢𝑛(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡

𝑥

𝑎
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The successive approximations method or the Picard iteration method will be illustrated 

by the following examples. 

Example 4.9. Solve the Volterra integral equation by using the successive approximations 

method: 

𝑢(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                       (4.19) 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢𝑛−1(𝑡)𝑑𝑡
𝑥

0
     , 𝑛 ≥ 1                       (4.20) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 1                                                   (4.21) 

Substituting (4.21) into (4.20), we obtain: 

𝑢1(𝑥) = 1 − ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

= 1 − ∫(𝑥 − 𝑡)𝑑𝑡

𝑥

0

= 1 −
1

2!
𝑥2 

𝑢2(𝑥) = 1 − ∫(𝑥 − 𝑡)𝑢1(𝑡)𝑑𝑡

𝑥

0

= 1 − ∫(𝑥 − 𝑡) (1 −
1

2!
𝑡2) 𝑑𝑡

𝑥

0

= 1 −
1

2!
𝑥2 +

1

4!
𝑥4 

𝑢3(𝑥) = 1 − ∫(𝑥 − 𝑡)𝑢2(𝑡)𝑑𝑡

𝑥

0

= 1 − ∫(𝑥 − 𝑡) (1 −
1

2!
𝑡2 +

1

4!
𝑡4) 𝑑𝑡

𝑥

0

= 1 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 

Consequently, we obtain: 

𝑢𝑛+1(𝑥) = ∑(−1)𝑘
𝑥2𝑘

(2𝑘)!

𝑛

𝑘=0

 

The solution u(x) of (4.19): 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = cos 𝑥 

Example 4.10. Solve the Volterra integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
                       (4.22) 

The method of successive approximations admits the use of the iteration formula: 

𝑢𝑛(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢𝑛−1(𝑡)𝑑𝑡

𝑥

0
     , 𝑛 ≥ 1                       (4.23) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0                                                   (4.24) 

Substituting (4.24) into (4.23), we obtain: 

𝑢1(𝑥) = 1 + 𝑥 +
1

2!
𝑥2 
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𝑢2(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫(𝑥 − 𝑡)2𝑢1(𝑡)𝑑𝑡

𝑥

0

= 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

5!
𝑥5 

⋮ 
and so on. The solution u(x) of (4.22) is given by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = 𝑒𝑥 

Example 4.11. Solve the Volterra integral equation by using the successive 

approximations method: 

𝑢(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
                       (4.25) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 0                                                                           (4.26) 

We next use the iteration formula: 

𝑢𝑛+1(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡𝑢𝑛(𝑡)𝑑𝑡

𝑥

0
  , 𝑛 ≥ 0      (4.27) 

Substituting (4.26) into (4.27),  we obtain: 

 

𝑢1(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 

𝑢2(𝑥) = −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡𝑢1(𝑡)𝑑𝑡

𝑥

0

= −1 + 𝑒𝑥 +
1

2
𝑥2𝑒𝑥 −

1

2
∫ 𝑡 (−1 + 𝑒𝑡 +

1

2
𝑡2𝑒𝑡) 𝑑𝑡

𝑥

0

= −3 +
1

4
𝑥2 + 𝑒𝑥 (3 − 2𝑥 +

5

4
𝑥2 −

1

4
𝑥3) 

𝑢3(𝑥) = 𝑥 (1 + 𝑥 +
1

2!
𝑥2) 

 

Example 4.12. Solve the Volterra integral equation by using the successive 

approximations method: 

𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
                       (4.28) 

For the zeroth approximation u0(x), we can select: 

𝑢0(𝑥) = 𝑥                                                                          (4.29) 

We next use the iteration formula: 

𝑢𝑛+1(𝑥) = 1 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 + ∫ 𝑡𝑢𝑛(𝑡)𝑑𝑡
𝑥

0
, 𝑛 ≥ 0      (4.30) 

Substituting (4.29) into (4.30),  we obtain: 

𝑢1(𝑥) = 1 +
1

3
𝑥3 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 

𝑢2(𝑥) = 3 +
1

2
𝑥2 +

1

15
𝑥3 − (2 + 3𝑥 − 𝑥2) sin 𝑥 − (2 − 3𝑥 − 𝑥2) cos 𝑥 
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𝑢3(𝑥) = (𝑥 −
1

3!
𝑥3 +

1

5!
𝑥5 −

1

7!
𝑥7) + (1 −

1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6)          

⋮ 

𝑢𝑛+1(𝑥) = ∑(−1)𝑘
𝑥2𝑘+1

(2𝑘 + 1)!

𝑛

𝑘=0

+ ∑(−1)𝑘
𝑥2𝑘

(2𝑘)!

𝑛

𝑘=0

                                    

Notice that we used the Taylor expansion for sin x and cos x to determine the 

approximations u3(x), u4(x), . . .. The solution u(x) of (4.28) is given by: 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛+1(𝑥) = sin 𝑥 + cos 𝑥 

Exercises 4.3. 

Use the successive approximations method to solve the following Volterra integral 

equations: 

1. 𝑢(𝑥) = 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 𝑥 cosh 𝑥 − ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 1 + sinh 𝑥 − sin 𝑥 + cos 𝑥 − cosh 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.4 The Laplace Transform Method 

 
The Laplace transform method is a powerful technique that can be used for solving 

initial value problems and integral equations as well. The details and properties of the 

Laplace method can be found in ordinary differential equations texts. 

Before we start applying this method, we summarize some of the concepts presented in 

Section 1.3. In the convolution theorem for the Laplace transform, it was stated that if the 

kernel K(x, t) of the integral equation: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

𝑎

 

depends on the difference x−t, then it is called a difference kernel. Examples of the 

difference kernel are ex−t, cos(x − t), and x − t. The integral equation can thus be expressed 

as: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
                 (4.31) 

Consider two functions f1(x) and f2(x) that possess the conditions needed for the existence 

of Laplace transform for each. Let the Laplace transforms for the functions f1(x) and f2(x) 

be given by: 

ℒ{𝑓1(𝑥)} = 𝐹1(𝑠) 

ℒ{𝑓2(𝑥)} = 𝐹2(𝑠) 

The Laplace convolution product of these two functions is defined by: 
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(𝑓1 ∗ 𝑓2)(𝑥) = ∫ 𝑓1(𝑥 − 𝑡)𝑓2(𝑡)𝑑𝑡

𝑥

0

 

or 

(𝑓2 ∗ 𝑓1)(𝑥) = ∫ 𝑓2(𝑥 − 𝑡)𝑓1(𝑡)𝑑𝑡

𝑥

0

 

Recall that 
(𝑓1 ∗ 𝑓2)(𝑥) = (𝑓2 ∗ 𝑓1)(𝑥) 

We can easily show that the Laplace transform of the convolution product (f1 ∗ f2)(x) is 

given by: 

ℒ{(𝑓1 ∗ 𝑓2)(𝑥)} = ℒ {∫ 𝑓1(𝑥 − 𝑡)𝑓2(𝑡)𝑑𝑡

𝑥

0

} = 𝐹1(𝑠)𝐹2(𝑠) 

Based on this summary, we will examine specific Volterra integral equations where the 

kernel is a difference kernel. Recall that we will apply the Laplace transform method 

and the inverse of the Laplace transform using  the following Table : 

 

f(x) F(s)=ℒ{𝑓(𝑥)} 

C 𝑐

𝑠
 , 𝑠 > 0 

X 1

𝑠2
 , 𝑠 > 0 

𝑥𝑛  𝑛!

𝑠𝑛+1
=

Γ(𝑛 + 1)

𝑠𝑛+1
 , 𝑆 > 0, 𝑅𝑒 (𝑛) > −1 

𝑒𝑎𝑥  1

𝑠 − 𝑎
 , 𝑠 > 𝑎 

sin 𝑎𝑥  𝑎

𝑠2 + 𝑎2
  

cos 𝑎𝑥  𝑠

𝑠2 + 𝑎2
 

𝑠𝑖𝑛2𝑎𝑥  2𝑎2

𝑠(𝑠2 + 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

𝑐𝑜𝑠2𝑎𝑥  𝑠2 + 2𝑎2

𝑠(𝑠2 + 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

x sin 𝑎𝑥  2𝑎𝑠

(𝑠2 + 𝑎2)2
  

x cos 𝑎𝑥  𝑠2 − 𝑎2

(𝑠2 + 𝑎2)2
  

sinh 𝑎𝑥  𝑎

𝑠2 − 𝑎2
 , 𝑠 > |𝑎| 



 

Chapter Four: Volterra Integral Equations 
45 

 

 

cosh 𝑎𝑥  𝑠

𝑠2 − 𝑎2
  , 𝑠 > |𝑎|  

𝑠𝑖𝑛ℎ2𝑎𝑥  2𝑎2

𝑠(𝑠2 − 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

𝑐𝑜𝑠ℎ2𝑎𝑥  𝑠2 − 2𝑎2

𝑠(𝑠2 − 4𝑎2)
  , 𝑅𝑒 (𝑠) > |𝐼𝑚(𝑎)| 

x sinh 𝑎𝑥  2𝑎𝑠

(𝑠2 − 𝑎2)2
 , 𝑠 > |𝑎| 

x cosh 𝑎𝑥  𝑠2 + 𝑎2

(𝑠2 − 𝑎2)2
  , 𝑠 > |𝑎|  

𝑥𝑛𝑒𝑎𝑥  𝑛!

(𝑠 − 𝑎)𝑛+1
 , 𝑠 > 𝑎 , 𝑛 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝑒𝑎𝑥 sin 𝑏𝑥  𝑏

(𝑠 − 𝑎)2 + 𝑏2
  , 𝑠 > 𝑎 

𝑒𝑎𝑥 cos 𝑏𝑥  𝑠 − 𝑎

(𝑠 − 𝑎)2 + 𝑏2
  , 𝑠 > 𝑎 

𝑒𝑎𝑥 sinh 𝑏𝑥  𝑏

(𝑠 − 𝑎)2 − 𝑏2
  , 𝑠 > 𝑎 

𝑒𝑎𝑥 cosh 𝑏𝑥  𝑠 − 𝑎

(𝑠 − 𝑎)2 − 𝑏2
  , 𝑠 > 𝑎 

 

By taking Laplace transform of both sides of (4.31), we find: 

𝑈(𝑠) = 𝐹(𝑠) + 𝜆𝐾(𝑠)𝑈(𝑠)                (4.32) 

Where 

𝑈(𝑠) = ℒ{𝑢(𝑥)} , 𝐹(𝑠) = ℒ{𝑓(𝑥)}  , 𝐾(𝑠) = ℒ{𝐾(𝑥)} 

Solving (4.32) for U(s) gives: 

𝑈(𝑠) =
𝐹(𝑠)

1−𝜆𝐾(𝑠)
  , 𝜆𝐾(𝑠) ≠ 1              (4.33) 

The solution u(x) is obtained by taking the inverse Laplace transform of both sides of 

(4.33),  where we find: 

𝑢(𝑥) = ℒ−1 {
𝐹(𝑠)

1−𝜆𝐾(𝑠)
}                          (4.34) 

Recall that the right side of (4.34) can be evaluated by using the above Table. The Laplace 

transform method for solving Volterra integral equations will be illustrated by studying 

the following examples. 

Example 4.13. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                     (4.35) 

Notice that the kernel K(x−t) = 1, λ = 1. Taking Laplace transform of both sides (4.35) 

gives: 

ℒ{𝑢(𝑥)} = ℒ{1} + ℒ{1 ∗ 𝑢(𝑥)} 
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So that 

𝑈(𝑠) =
1

𝑠
+

1

𝑠
𝑈(𝑠) 

𝑈(𝑠) =
1

𝑠 − 1
 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = 𝑒𝑥 

Example 4.14. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                     (4.36) 

Notice that the kernel K(x−t) = x-t, λ = -1. Taking Laplace transform of both sides (4.36) 

gives: 

ℒ{𝑢(𝑥)} = ℒ{1} − ℒ{(𝑥 − 𝑡) ∗ 𝑢(𝑥)} 

So that 

𝑈(𝑠) =
1

𝑠
−

1

𝑠2
𝑈(𝑠) 

𝑈(𝑠) =
𝑠

𝑠2 + 1
 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = cos 𝑥 

 

Example 4.15. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) =
1

3!
𝑥3 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
                     (4.37) 

Taking Laplace transform of both sides (4.37) gives: 

ℒ{𝑢(𝑥)} =
1

3!
ℒ{𝑥3} − ℒ{(𝑥 − 𝑡) ∗ 𝑢(𝑥)} 

So that 

𝑈(𝑠) =
1

3!

3!

𝑠4
−

1

𝑠2
𝑈(𝑠) 

𝑈(𝑠) =
1

𝑠2(𝑠2 + 1)
=

1

𝑠2
−

1

𝑠2 + 1
 

 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = 𝑥 − sin 𝑥 

Example 4.16. Solve the Volterra integral equation by using the Laplace transform 

method 

𝑢(𝑥) = sin 𝑥 + cos 𝑥 + 2 ∫ sin(𝑥 − 𝑡) 𝑢(𝑡)𝑑𝑡
𝑥

0
                     (4.38) 
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Taking Laplace transform of both sides (4.38) gives: 

ℒ{𝑢(𝑥)} =
1

3!
ℒ{𝑥3} − ℒ{(𝑥 − 𝑡) ∗ 𝑢(𝑥)} 

So that 

𝑈(𝑠) =
1

𝑠2 + 1
+

𝑠

𝑠2 + 1
+

2

𝑠2 + 1
𝑈(𝑠) 

𝑈(𝑠) =
1

𝑠 − 1
 

 

By taking the inverse Laplace transform of both sides of the above equation, the exact 

solution is therefore given by: 

𝑢(𝑥) = 𝑒𝑥 

Exercises 4.4. 

Use the Laplace transform method to solve the Volterra integral equations: 

1. 𝑢(𝑥) = 1 − 𝑥 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = cos 𝑥 − sin 𝑥 + 2 ∫ cos(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 𝑒𝑥 − cos 𝑥 − 2 ∫ 𝑒𝑥−𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 1 − ∫ ((𝑥 − 𝑡)2 − 1)𝑢(𝑡)𝑑𝑡
𝑥

0
 

5. 𝑢(𝑥) = sin 𝑥 − cos 𝑥 + cosh 𝑥 − 2 ∫ cosh(𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.5 The Series Solution Method 
A real function u(x) is called analytic if it has derivatives of all orders such 

that the Taylor series at any point b in its domain 

𝑢(𝑥) = ∑
𝑢𝑛(𝑏)

𝑛!
(𝑥 − 𝑏)𝑛

∞

𝑛=0

 

converges to u(x) in a neighborhood of b. For simplicity, the generic form of the Taylor 

series at x = 0 can be written as: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0                                   (4.39) 

In this section, we will present a useful method, that stems mainly from the Taylor series 

for analytic functions, for solving Volterra integral equations. We will assume that the 

solution u(x) of the Volterra integral equation: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
              (4.40) 

is analytic, and therefore possesses a Taylor series of the form given in (4.40), where the 

coefficients an will be determined recurrently. Substituting (4.39) into both sides of (4.40) 

gives: 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 )𝑑𝑡
𝑥

𝑎
                                  

or for simplicity we use 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ = 𝑇(𝑓(𝑥)) + 𝜆 ∫ 𝐾(𝑥, 𝑡)(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ )𝑑𝑡
𝑥

𝑎
      (4.41) 
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where T (f(x)) is the Taylor series for f(x). The integral equation (4.40) will be converted 

to a traditional integral in(4.41) where instead of integrating the unknown function u(x), 

terms of the form tn, n≥ 0 will be integrated. Notice that because we are seeking a series 

solution, then if f(x) includes elementary functions such as trigonometric functions, 

exponential functions, etc., Taylor expansions for functions involved in f(x) should be 

used. 

We first integrate the right side of the integral in (4.41) and collect the coefficients of like 

powers of x. We next equate the coefficients of like powers of x in both sides of the 

resulting equation to obtain a recurrence relation in aj, j ≥ 0. Solving the recurrence 

relation will lead to a complete determination of the coefficients aj, j ≥ 0. Having 

determined the coefficients aj, j ≥ 0, the series solution follows immediately upon 

substituting the derived coefficients into (4.39). The exact solution may be obtained if 

such an exact solution exists. If an exact solution is not obtainable, then the obtained series 

can be used for numerical purposes. In this case, the more terms we evaluate, the higher 

the accuracy level we achieve. 

Example 4.17 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.42) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 42) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 1 + ∫ (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 1 + ∑
1

𝑛 + 1
𝑎𝑛𝑥𝑛+1

∞

𝑛=0

 

that can be rewritten as: 

𝑎0 + ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=1

= 1 + ∑
1

𝑛
𝑎𝑛−1𝑥𝑛

∞

𝑛=1

 

or equivalently 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = 1 + 𝑎0𝑥 +
1

2
𝑎1𝑥2 +

1

3
𝑎2𝑥3 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 1, 𝑎𝑛 =
1

𝑛
𝑎𝑛−1 , 𝑛 ≥ 1 

where this result gives: 
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𝑎𝑛 =
1

𝑛!
  , 𝑛 ≥ 0 

Substituting this result into (4.39) gives the series solution: 

𝑢(𝑥) = ∑
1

𝑛!
𝑥𝑛

∞

𝑛=0

 

that converges to the exact solution u(x) = ex. 

Example 4.18 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.43) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 43) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 𝑥 + ∫ 𝑥 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

− ∫ (∑ 𝑎𝑛𝑡𝑛+1

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 𝑥 + ∑
1

(𝑛 + 2)(𝑛 + 1)
𝑎𝑛𝑥𝑛+2

∞

𝑛=0

 

that can be rewritten as: 

𝑎0 + 𝑎1𝑥 + ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=2

= 𝑥 + ∑
1

𝑛(𝑛 − 1)
𝑎𝑛−2𝑥𝑛

∞

𝑛=2

 

or equivalently 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = 𝑥 +
1

2
𝑎0𝑥2 +

1

6
𝑎1𝑥3 +

1

12
𝑎2𝑥4 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 0, 𝑎1 = 1, 𝑎𝑛 =
1

𝑛(𝑛 − 1)
𝑎𝑛−2 , 𝑛 ≥ 2 

where this result gives: 

𝑎𝑛 =
1

(2𝑛 + 1)!
  , 𝑛 ≥ 0 

Substituting this result into (4.39) gives the series solution: 

𝑢(𝑥) = ∑
1

(2𝑛 + 1)!
𝑥2𝑛+1

∞

𝑛=0

 

that converges to the exact solution u(x) = sinh 𝑥. 
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Example 4.19 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.44) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 44) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 1 − 𝑥 sin 𝑥 + ∫ 𝑡 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ) = 1 − 𝑥 (𝑥 −
𝑥3

3!
+ ⋯ ) + ∫ 𝑡(𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ )𝑑𝑡

𝑥

0

 

Integrating the right side and collecting the like terms of x we find 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ) = 1 + (
1

2
𝑎0 − 1) 𝑥2 +

1

3
𝑎1𝑥3 + (

1

6
+

1

4
𝑎2) 𝑥4+.. 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 1, 𝑎1 = 0, 𝑎2 = (
1

2
𝑎0 − 1) = −

1

2!
 , 𝑎3 =

1

3
𝑎1 = 0, 𝑎4 = (

1

6
+

1

4
𝑎2) =

1

4!
  , …  

 

and generally 

𝑎2𝑛+1 = 0, 𝑎2𝑛 =
(−1)𝑛

(2𝑛)!
  , 𝑛 ≥ 0 

The solution in a series form is given by: 

𝑢(𝑥) = 1 −
1

2!
𝑥2 +

1

4!
𝑥4 − ⋯ 

that converges to the exact solution u(x) = cos 𝑥. 

 

Example 4.20 Solve the Volterra integral equation by using the series solution method: 

𝑢(𝑥) = 2𝑒𝑥 − 2 − 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                   (4.45) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (4. 45) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 2𝑒𝑥 − 2 − 𝑥 + ∫(𝑥 − 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

 

Evaluating the integral on the right side gives: 
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(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= 𝑥 + (1 +
1

2
𝑎0) 𝑥2 + (

1

3
+

1

6
𝑎1) 𝑥3 + (

1

12
+

1

12
𝑎2) 𝑥4 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation gives the 

recurrence relation: 

𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 =
1

2!
 , 𝑎4 =

1

3!
  , …  

 

The solution in a series form is given by: 

𝑢(𝑥) = 𝑥 (1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +

1

4!
𝑥4 + ⋯ ) 

that converges to the exact solution u(x) = 𝑥𝑒𝑥 

Exercises 4.5 Use the series solution method to solve the Volterra integral equations: 

1. 𝑢(𝑥) = 1 + 𝑥𝑒𝑥 − ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

2. 𝑢(𝑥) = 2 cosh 𝑥 − 2 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = sec 𝑥 + tan 𝑥 − ∫ sec 𝑡 𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 3 + 𝑥2 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
 

 

4.6 The Variational Iteration Method 

 
In this section, we will study the newly developed variational iteration method that 

proved to be effective and reliable for analytic and numerical purposes. The method 

provides rapidly convergent successive approximations of the exact solution if such a 

closed form solution exists, and not components as in the Adomian decomposition 

method. The variational iteration method handles linear and nonlinear problems in the 

same manner without any need for specific restrictions such as the so-called Adomian 

polynomials that we need for nonlinear problems. Moreover, the method gives the 

solution in a series form that converges to the closed-form solution if an exact solution 

exists. The obtained series can be employed for numerical purposes if an exact solution is 

not obtainable. In what follows, we present the main steps of the method. 

Consider the differential equation: 

ℒ𝑢 + ℵ𝑢 = 𝑔(𝑡)                                       (4.46) 

where ℒ and ℵ are linear and nonlinear operators respectively, and g(t) is the source 

inhomogeneous term. The variational iteration method presents a correction functional for 

equation (4.46) in the form: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)(ℒ𝑢𝑛(𝜓) + ℵ𝑢̃𝑛(𝜓) − 𝑔(𝜓))𝑑𝜓
𝑥

0
      (4.47) 
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where λ is a general Lagrange’s multiplier, noting that in this method λ may be a constant 

or a function, and 𝑢̃𝑛 is a restricted value that means it behaves as a constant, hence δ𝑢̃𝑛 

= 0, where δ is the variational derivative. The Lagrange multiplier λ can be identified 

optimally via the variational theory. 

The determination of the Lagrange multiplier plays a major role in the determination of 

the solution to the problem. In what follows, we summarize some iteration formulae that 

show ODE, its corresponding Lagrange multipliers, and its correction functional 

respectively: 

(𝑖) {
𝑢′ + 𝑓(𝑢(𝜓), 𝑢′(𝜓)) = 0, 𝜆 = −1

𝑢𝑛+1 = 𝑢𝑛 − ∫ [𝑢𝑛
′ + 𝑓(𝑢𝑛, 𝑢𝑛

′ )]𝑑𝜓
𝑥

0

  

(𝑖𝑖) {
𝑢′′ + 𝑓(𝑢(𝜓), 𝑢′(𝜓), 𝑢′′(𝜓)) = 0, 𝜆 = (𝜓 − 𝑥)

𝑢𝑛+1 = 𝑢𝑛 + ∫ (𝜓 − 𝑥)[𝑢𝑛
′′ + 𝑓(𝑢𝑛, 𝑢𝑛

′  , 𝑢𝑛
′′)]𝑑𝜓

𝑥

0

  

(𝑖𝑖𝑖) {
𝑢′′′ + 𝑓(𝑢(𝜓), 𝑢′(𝜓), 𝑢′′(𝜓), 𝑢′′′(𝜓)) = 0, 𝜆 =

1

2!
(𝜓 − 𝑥)2

𝑢𝑛+1 = 𝑢𝑛 − ∫
1

2!
(𝜓 − 𝑥)2[𝑢𝑛

′′′ + 𝑓(𝑢𝑛, 𝑢𝑛
′  , 𝑢𝑛

′′, 𝑢𝑛
′′′)]𝑑𝜓

𝑥

0

  

and  generally 

{
𝒖(𝒏) + 𝒇 (𝒖(𝝍), 𝒖′(𝝍), 𝒖′′(𝝍), … , 𝒖(𝒏)(𝝍)) = 𝟎 , 𝝀 = (−𝟏)𝒏 𝟏

(𝒏−𝟏)!
(𝝍 − 𝒙)(𝒏−𝟏)

𝒖𝒏+𝟏 = 𝒖𝒏 + (−𝟏)𝒏 ∫
𝟏

(𝒏−𝟏)!
(𝝍 − 𝒙)(𝒏−𝟏) [𝒖𝒏

(𝒏)
+ 𝒇(𝒖𝒏, 𝒖𝒏

′  , 𝒖𝒏
′′, … , 𝒖𝒏

(𝒏)
)] 𝒅𝝍

𝒙

𝟎

 , 𝒇𝒐𝒓 𝒏 ≥ 𝟏   

To use the variational iteration method for solving Volterra integral equations, it is 

necessary to convert the integral equation to an equivalent initial value problem or an 

equivalent integro-differential equation. As defined before, an integro-differential 

equation is an equation that contains differential and integral operators in the same 

equation. 

 

Example 4.21 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                          (4.48) 

Using the Leibnitz rule to differentiate both sides of (4.48)gives: 

𝑢′(𝑥) − 𝑢(𝑥) = 0                                (4.49) 

Substituting x = 0 into (4.48) gives the initial condition u(0) = 1. 

Using the variational iteration method 

The correction functional for equation (4.49)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′(ψ) − 𝑢(𝜓)]𝑑𝜓
𝑥

0
          (4.50) 

Using the formula (i) given above leads to: 

𝜆 = −1 

Substituting this value of the Lagrange multiplier λ = −1 into the functional (4.50) gives 

the iteration formula: 
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𝑢𝑛+1 = 𝑢𝑛 − ∫[𝑢′(ψ) − 𝑢(𝜓)]𝑑𝜓

𝑥

0

 

As stated before, we can use the initial condition to select u0(x) = u(0) = 1. 

Using this selection into (4.50) gives the following successive approximations: 

𝑢0 = 1                                                                                                                        

𝑢1 = 1 − ∫[𝑢0
′ (ψ) − 𝑢0(𝜓)]𝑑𝜓

𝑥

0

= 1 + 𝑥                                                         

𝑢2 = 1 + 𝑥 − ∫[𝑢1
′ (ψ) − 𝑢1(𝜓)]𝑑𝜓

𝑥

0

= 1 + 𝑥 +
1

2!
𝑥2                                  

𝑢3 = 1 + 𝑥 +
1

2!
𝑥2 − ∫[𝑢2

′ (ψ) − 𝑢2(𝜓)]𝑑𝜓

𝑥

0

= 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 

and so on. The VIM admits the use of 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

= lim
𝑛→∞

1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 + ⋯ +

1

𝑛!
𝑥𝑛 

that gives the exact solution by: u(x) = ex. 

Example 4.22 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                          (4.51) 

Using the Leibnitz rule to differentiate both sides of (4.51) once with respect to x gives 

the integro-differential equation: 

𝑢′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                       (4.52) 

However, by differentiating (4.52) with respect to x we obtain the differential equation: 

𝑢′′(𝑥) − 𝑢(𝑥) = 0                                           (4.53) 

Substituting x = 0 into (4.51) and (4.52) gives the initial conditions u(0) = 0and u'(0)=1. 

The resulting initial value problem, which consists of a second order ODE and initial 

conditions is given by: 

𝑢′′(𝑥) − 𝑢(𝑥) = 0  , 𝑢(0)  =  0and u′(0) = 1       (4.54) 

 

Using the variational iteration method 

The correction functional for equation (4.54)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′′(ψ) − 𝑢̃(𝜓)]𝑑𝜓
𝑥

0
          (4.55) 

Using the formula (ii) given above leads to: 

𝜆 = 𝜓 − 𝑥 

Substituting this value of the Lagrange multiplier  
𝜆 = 𝜓 − 𝑥  into the functional (4.55) gives the iteration formula: 
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𝑢𝑛+1 = 𝑢𝑛 − ∫ (𝜓 − 𝑥)[𝑢′(ψ) − 𝑢(𝜓)]𝑑𝜓
𝑥

0
          (4.56) 

We can use the initial conditions to select u0(x) = u(0) + x𝑢′ (0) = x. Using this selection 

in (4.56) gives the following successive approximations: 

𝑢0 = 𝑥                                                                                                                        

𝑢1 = 𝑥 + ∫(𝜓 − 𝑥)[𝑢0
′′(ψ) − 𝑢0(𝜓)]𝑑𝜓

𝑥

0

= 𝑥 +
1

3!
𝑥3                                                         

𝑢2 = 𝑥 +
1

3!
𝑥3 + ∫(𝜓 − 𝑥)[𝑢1

′′(ψ) − 𝑢1(𝜓)]𝑑𝜓

𝑥

0

= 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5                                  

𝑢3 = 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 + ∫(𝜓 − 𝑥)[𝑢2

′′(ψ) − 𝑢2(𝜓)]𝑑𝜓

𝑥

0

= 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 +

1

7!
𝑥7 

 

⋮ 

𝑢𝑛 = 𝑥 +
1

3!
𝑥3 +

1

5!
𝑥5 +

1

7!
𝑥7 + ⋯ +

1

(2𝑛 + 1)!
𝑥2𝑛+1                                                         

The VIM admits the use of   𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

that gives the exact solution by:   𝑢(𝑥) = sinh 𝑥 

Example 4.23 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 1 + 𝑥 +
1

3!
𝑥3 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
                          (4.57) 

Using the Leibnitz rule to differentiate both sides of (4.57) once with respect to x gives 

the integro-differential equation: 

𝑢′(𝑥) = 1 +
1

2!
𝑥2 − ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
                                       (4.58) 

However, by differentiating (4.58) with respect to x we obtain the differential equation: 

𝑢′′(𝑥) + 𝑢(𝑥) = 𝑥                                                        (4.59) 

Substituting x = 0 into (4.57) and (4.58) gives the initial conditions u(0) = 1and u'(0)=1. 

The resulting initial value problem, which consists of a second order ODE and initial 

conditions is given by: 

𝑢′′(𝑥) + 𝑢(𝑥) = 𝑥  , 𝑢(0)  =  1and u′(0) = 1       (4.60) 

Using the variational iteration method 

The correction functional for equation (4.60)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′′(ψ) + 𝑢̃(𝜓) − 𝜓]𝑑𝜓
𝑥

0
          (4.61) 

Using the formula (ii) given above leads to: 

𝜆 = 𝜓 − 𝑥 

Substituting this value of the Lagrange multiplier  
𝜆 = 𝜓 − 𝑥  into the functional (4.60) gives the iteration formula: 

𝑢𝑛+1 = 𝑢𝑛 − ∫ (𝜓 − 𝑥)[𝑢′(ψ) + 𝑢(𝜓) − 𝜓]𝑑𝜓
𝑥

0
          (4.62) 
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We can use the initial conditions to select u0(x) = u(0) + x𝑢′ (0) = 1+x. Using this selection 

in (4.62) gives the following successive approximations: 

                     𝑢0 = 1 + 𝑥                                                                                                                        

𝑢1 = 1 + 𝑥 + ∫(𝜓 − 𝑥)[𝑢0
′′(ψ) + 𝑢0(𝜓) − 𝜓]𝑑𝜓

𝑥

0

= 1 + 𝑥 −
1

2!
𝑥2                                                         

𝑢2 = 1 + 𝑥 −
1

2!
𝑥2 + ∫(𝜓 − 𝑥)[𝑢1

′′(ψ) + 𝑢1(𝜓) − 𝜓]𝑑𝜓

𝑥

0

= 1 + 𝑥 −
1

2!
𝑥2 +

1

4!
𝑥4                                  

𝑢3 = 1 + 𝑥 −
1

2!
𝑥2 +

1

4!
𝑥4 + ∫(𝜓 − 𝑥)[𝑢2

′′(ψ) + (𝜓) − 𝜓]𝑑𝜓

𝑥

0

 

= 1 + 𝑥 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 

 

⋮ 

𝑢𝑛 = 𝑥 + (1 −
1

2!
𝑥2 +

1

4!
𝑥4 −

1

6!
𝑥6 + ⋯ +

(−1)𝑛

(2𝑛)!
𝑥2𝑛                                                         

The VIM admits the use of   𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

that gives the exact solution by:   𝑢(𝑥) = 𝑥 + cos 𝑥 

Example 4.24 Solve the Volterra integral equation by using the variational iteration 

method 

𝑢(𝑥) = 1 + 𝑥 +
1

2
𝑥2 +

1

2
∫ (𝑥 − 𝑡)2𝑢(𝑡)𝑑𝑡

𝑥

0
                          (4.63) 

Using the Leibnitz rule to differentiate both sides of (4.63) three times with respect to x 

gives the two integro-differential equations: 

𝑢′(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
                                       (4.64) 

𝑢′′(𝑥) = 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
                                                        (4.65) 

However, by differentiating (4.65) with respect to x we obtain the differential equation: 

𝑢′′′(𝑥) − 𝑢(𝑥) = 0                                                        (4.66) 

Substituting x = 0 into (4.63) , (3.64) and (4.65) gives the initial conditions: 

 𝑢(0) = 𝑢′(0) = 𝑢′′(0) = 1. 

The resulting initial value problem, which consists of a third order ODE and initial 

conditions is given by: 

𝑢′′(𝑥) − 𝑢(𝑥) = 0, 𝑢(0) = 𝑢′(0) = 𝑢′′(0) = 1       (4.67) 
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Using the variational iteration method 

The correction functional for equation (4.67)is: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜓)[𝑢′′′(ψ) − 𝑢̃(𝜓)]𝑑𝜓
𝑥

0
          (4.68) 

Using the formula (iii) given above leads to: 

𝜆 = −
1

2!
(𝜓 − 𝑥)2 

Substituting this value of the Lagrange multiplier  

𝜆 = −
1

2!
(𝜓 − 𝑥)2  into the functional (4.68) gives the iteration formula: 

𝑢𝑛+1 = 𝑢𝑛 −
1

2!
∫ (𝜓 − 𝑥)2[𝑢′′′(ψ) − 𝑢̃(𝜓)]𝑑𝜓

𝑥

0
          (4.69) 

We can use the initial conditions to select u0(x) = u(0) + x𝑢′(0)+
𝑥2

2
𝑢′′(0) = 1+x+

𝑥2

2
. Using 

this selection in (4.69) gives the following successive approximations: 

                     𝑢0 = 1 + 𝑥 + 
𝑥2

2
                                                                                                             

𝑢1 = 1 + 𝑥 + 
𝑥2

2!
+ 

𝑥3

3!
+ 

𝑥4

4!
+ 

𝑥5

5!
                                                         

𝑢2 = 1 + 𝑥 + 
𝑥2

2!
+ 

𝑥3

3!
+ 

𝑥4

4!
+ 

𝑥5

5!
+ + 

𝑥6

6!
+ + 

𝑥7

7!
+ 

𝑥8

8!
                                 

⋮ 

𝑢𝑛 = 1 + 𝑥 + 
𝑥2

2!
+ 

𝑥3

3!
+ 

𝑥4

4!
+ 

𝑥5

5!
+ + 

𝑥6

6!
+ + 

𝑥7

7!
+ 

𝑥8

8!
+ ⋯                                                        

The VIM admits the use of   𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) 

that gives the exact solution by:   𝑢(𝑥) = 𝑒𝑥 

 

Exercises 4.6 Use the variational iteration method to solve the following Volterra integral 

equations: 

1. 𝑢(𝑥) = 𝑥 + 𝑥4 +
1

2
𝑥2 +

1

5
𝑥5 − ∫ 𝑢(𝑡)𝑑𝑡

𝑥

0
 

2. 𝑢(𝑥) = 2 + 𝑥 − 2 cos 𝑥 − ∫ (𝑥 − 𝑡 + 2)𝑢(𝑡)𝑑𝑡
𝑥

0
 

3. 𝑢(𝑥) = 1 − 𝑥 sin 𝑥 + 𝑥 cos 𝑥 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
 

4. 𝑢(𝑥) = 1 − 2 sinh 𝑥 + ∫ (𝑥 − 𝑡 + 2)𝑢(𝑡)𝑑𝑡
𝑥

0
 


