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Chapter Five Volterra-Fredholm Integral Equations 
The Volterra-Fredholm integral equations arise from parabolic boundary value problems, 

from the mathematical modeling of the Spatio-temporal development of an epidemic, and 

from various physical and biological models. The Volterra-Fredholm integral equations 

appear in the literature in two forms, namely: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

𝑎
+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡

𝑏

𝑎
                  (5.1) 

or, 

𝑢(𝑥) = 𝑓(𝑥) + 𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

𝑥

𝑎
                             (5.2) 

where f(x) and K(x, t) are analytic functions. It is interesting to note that (5.1) contains 

disjoint Volterra and Fredholm integrals, whereas (5.2) contains mixed Volterra and 

Fredholm integrals. Moreover, the unknown functions u(x) appear inside and outside the 

integral signs. This is a characteristic feature of the second kind of integral equation. If 

the unknown functions appear only inside the integral signs, the resulting equations are of 

the first kind. 

In this chapter, we will study some of the reliable methods that will be used for the analytic 

treatment of the Volterra-Fredholm integral equations of the form (5.1). 

This type of equation will be handled by using the Taylor series method and the Adomian 

decomposition method combined with the noise terms phenomenon or the modified 

decomposition method.  

 

5.1 The Series Solution Method: 
The series solution method was examined before. A real function u(x) is called analytic if 

it has derivatives of all orders such that the generic form of the Taylor series at x = 0 can 

be written as: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0                               (5.3) 

In this section, we will apply the series solution method, which stems mainly from the 

Taylor series for analytic functions, for solving Volterra-Fredholm integral equations. We 

will assume that the solution u(x) of the Volterra-Fredholm integral equation (5.1) is 

analytic, and therefore possesses a Taylor series of the form given in (5.3), where the 

coefficients an will be determined recurrently. In this method, we usually substitute the 

Taylor series (5.3) into both sides of (5.1) to obtain: 

 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑇(𝑓(𝑥)) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡)(∑ 𝑎𝑛𝑥𝑛∞

𝑛=0 )𝑑𝑡
𝑥

𝑎
+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)(∑ 𝑎𝑛𝑥𝑛∞

𝑛=0 )𝑑𝑡
𝑏

𝑎
         (5.4) 

where T (f(x)) is the Taylor series for f(x). The Volterra-Fredholm integral equation (5.1) 

will be converted to a regular integral in (5.4) where instead of integrating the unknown 

function u(x), terms of the form 𝑡𝑛, 𝑛 ≥ 0, will be integrated. Notice that because we are 

seeking a series solution, then if f(x) includes elementary functions such as trigonometric 

functions, exponential functions, etc., Taylor expansions for functions involved in f(x) 

should be used. 
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We first integrate the right side of the integrals in (5.4) and collect the coefficients of like 

powers of x. We next equate the coefficients of like powers of x into both sides of the 

resulting equation to determine a recurrence relation in 𝑎𝑗 , 𝑗 ≥  0. Solving the recurrence 

relation will lead to a complete determination of the coefficients 𝑎𝑗 , 𝑗 ≥  0. Having 

determined the coefficients 𝑎𝑗 , 𝑗 ≥  0, the series solution follows immediately upon 

substituting the derived coefficients into (5.3). The exact solution may be obtained if such 

an exact solution exists. If an exact solution is not obtainable, then the obtained series can 

be used for numerical purposes. In this case, the more terms we evaluate, the higher the 

accuracy level we achieve. 

Example 5.1 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = −5 − 𝑥 + 12𝑥2 − 𝑥3 − 𝑥4 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

0
    (5.5) 

Substituting u(x) by the series: 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (5.5) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= −5 − 𝑥 + 12𝑥2 − 𝑥3 − 𝑥4 + ∫(𝑥 − 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

+ ∫(𝑥 + 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

0

 

Evaluating the integrals at the right side, using a few terms from both sides, and collecting the coefficients 

of like powers of x, we find: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= −5 +
1

2
𝑎0 +

1

3
𝑎1 +

1

4
𝑎2 +

1

5
𝑎3 +

1

6
𝑎4

+ (−1 + 𝑎0 +
1

2
𝑎1 +

1

3
𝑎2 +

1

4
𝑎3 +

1

5
𝑎4) 𝑥 + (12 +

1

2
𝑎0) 𝑥2 + (−1 +

1

6
𝑎1) 𝑥3

+ (−1 +
1

12
𝑎2) 𝑥4 + ⋯ 

Equating the coefficients of like powers of x on both sides of the above equation and 

solving the resulting system of equations, we obtain: 

𝑎0 = 0, 𝑎1 = 6, 𝑎2 = 12, 𝑎3 = 𝑎4 = 𝑎5 = ⋯ = 0 

the exact solution is therefore given by: 

𝑢(𝑥) = 6𝑥 + 12𝑥3 

 

Example 5.2 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = 2 − 𝑥 − 𝑥2 − 6𝑥3 + 𝑥5 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

−1
    (5.6) 

 

Substituting u(x) by the series: 
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𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (5.6) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= 2 − 𝑥 − 𝑥2 − 6𝑥3 + 𝑥5 + ∫ 𝑡 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

+ ∫(𝑥 + 𝑡) (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

−1

 

Evaluating the integrals at the right side, using a few terms from both sides, and collecting the coefficients 

of like powers of x, we find: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= 2 +
2

3
𝑎1 +

2

5
𝑎3 + (−1 + 2𝑎0 +

2

3
𝑎2 +

2

5
𝑎4) 𝑥 + (−1 +

1

2
𝑎0) 𝑥2

+ (−6 +
1

3
𝑎1) 𝑥3 +

1

4
𝑎2𝑥4 + (1 +

1

5
𝑎3) 𝑥5 + ⋯ 

 

Equating the coefficients of like powers of x on both sides of the above equation and 

solving the resulting system of equations, we obtain: 

𝑎0 = 2, 𝑎1 = 3, 𝑎2 = 0, 𝑎3 = −5, 𝑎4 = 𝑎5 = ⋯ = 0 

the exact solution is therefore given by: 

𝑢(𝑥) = 2 + 3𝑥 − 5𝑥3 

 

Example 5.3 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = 𝑒𝑥 − 1 − 𝑥 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑥𝑢(𝑡)𝑑𝑡

1

0
          (5.7) 

 
Using the Taylor polynomial for 𝑒𝑥, substituting u(x) by the Taylor polynomial 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

into both sides of Eq. (5.7) leads to: 

∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

= (∑
𝑥𝑛

𝑛!

∞

𝑛=0

) − 1 − 𝑥 + ∫ (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

𝑥

0

+ ∫ 𝑥 (∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

) 𝑑𝑡

1

0

 

and proceeding as before leads to: 

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )

= (2𝑎0 + ∑
1

𝑛 + 1
𝑎𝑛

∞

𝑛=1

) 𝑥 +
1 + 𝑎1

2!
𝑥2 +

(1 + 2! 𝑎2)

3!
𝑥3 +

1 + 3! 𝑎3

4!
𝑥4

+
(1 + 4! 𝑎4)

5!
𝑥5 +

(1 + 5! 𝑎5)

6!
𝑥6 + ⋯ 
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Equating the coefficients of like powers of x on both sides of the above equation and 

solving the resulting system of equations, we obtain: 

𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 1, 𝑎3 =
1

2!
, 𝑎4 =

1

3!
, 𝑎5 =

1

4!
, … 

the exact solution is therefore given by: 

𝑢(𝑥) = 𝑥𝑒𝑥 

Example 5.4 

Solve the Volterra-Fredholm integral equation by using the series solution method: 

𝑢(𝑥) = 1 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢(𝑡)𝑑𝑡

1

0
          (5.8) 

 
Using the Taylor polynomial for 𝑒𝑥, substituting u(x) by the Taylor polynomial 

𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛

∞

𝑛=0

 

and proceeding as before we obtain that: 

𝑎0 = 1, 𝑎1 =  𝑎3 = 𝑎5 = 𝑎7 = 0, … 

𝑎2 = −
1

2!
, 𝑎4 =

1

4!
, 𝑎6 = −

1

6!
, … 

the exact solution is therefore given by: 

𝑢(𝑥) = cos 𝑥 

Exercises 5.1 

Use the series solution method to solve the following Volterra-Fredholm integral 

equations: 

1. 𝑢(𝑥) = 4 − 𝑥 − 4𝑥2 − 𝑥3 + ∫ (𝑥 − 𝑡 + 1)𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 + 𝑡 − 1)𝑢(𝑡)𝑑𝑡

1

0
 

2. 𝑢(𝑥) = 2 + 𝑥 − 2 cos 𝑥 − ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
− ∫ 𝑥𝑢(𝑡)𝑑𝑡

𝜋

2
0

 

 

5.2 The Adomian Decomposition Method 
The Adomian decomposition method (ADM) was introduced thoroughly in this text for 

handling independently Volterra and Fredholm integral equations. The method consists 

of decomposing the unknown function u(x) of any equation into a sum of an infinite 

number of components defined by the decomposition series: 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                              (5.9) 

where the components 𝑢𝑛(𝑥), 𝑛 ≥  0 are to be determined recursively. To establish the 

recurrence relation, we substitute the decomposition series into the Volterra-Fredholm 

integral equation (5.1) to obtain: 

∑ 𝑢𝑛(𝑥)

∞

𝑛=0

= 𝑓(𝑥) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑥

𝑎

+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡) (∑ 𝑢𝑛(𝑡)

∞

𝑛=0

) 𝑑𝑡

𝑏

𝑎

 

The zeroth component 𝑢0(𝑥) is identified by all terms that are not included under the 

integral sign. Consequently, we set the recurrence relation: 
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𝑢0(𝑥) = 𝑓(𝑥)                                                (5.10) 

𝑢𝑛+1(𝑥) = 𝜆1 ∫ 𝑘1(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝑥

𝑎
+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝑏

𝑎
   , 𝑛 ≥ 0     (5.11) 

Having determined the components 𝑢0(𝑥), 𝑢1(𝑥), 𝑢2(𝑥), . .. , the solution in a series form 

is readily obtained upon using (5.9). The series solution converges to the exact solution if 

such a solution exists. We point out here that the noise terms phenomenon and the 

modified decomposition method will be employed in this section. This will be illustrated 

by using the following examples. 

Example 5.5 

Use the Adomian decomposition method to solve the following Volterra-Fredholm 

integral equation: 

𝑢(𝑥) = 𝑒𝑥 + 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0
− ∫ 𝑒𝑥−𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
        (5.12) 

Using the decomposition series (5.9), and using the recurrence relation (5.10) and (5.11), 

we obtain: 

𝑢0(𝑥) = 𝑒𝑥 + 1 + 𝑥 

𝑢1(𝑥) = ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

− ∫ 𝑒𝑥−𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= −𝑥 − 1 +
1

2
𝑥2 + ⋯, 

and so on. We notice the appearance of the noise terms ±1 and ±x between the components 

𝑢0(𝑥) and 𝑢1(𝑥). By canceling these noise terms from 𝑢0(𝑥),  the non-canceled term of 

𝑢0(𝑥) gives the exact solution 𝑢(𝑥) = 𝑒𝑥 , that satisfies the given equation. 

It is to be noted that the modified decomposition method can be applied here. Using the 

modified recurrence relation: 

𝑢0(𝑥) = 𝑒𝑥 

𝑢1(𝑥) = 1 + 𝑥 + ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

− ∫ 𝑒𝑥−𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

= 0 

The exact solution 𝑢(𝑥) = 𝑒𝑥 follows immediately. 

Example 5.6 

Use the modified Adomian decomposition method to solve the following Volterra-

Fredholm integral equation: 

𝑢(𝑥) = 𝑥2 −
1

12
𝑥4 −

1

4
−

1

3
𝑥 + ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

1

0
         (5.13) 

Using the modified decomposition method gives the recurrence relation: 

𝑢0(𝑥) = 𝑥2 −
1

12
𝑥4 

𝑢1(𝑥) = −
1

4
−

1

3
𝑥 + ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝑥

0

+ ∫(𝑥 + 𝑡)𝑢0(𝑡)𝑑𝑡

1

0

 

=
1

12
𝑥4 −

1

360
𝑥6 −

1

60
𝑥 −

1

72
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and so on. We notice the appearance of the noise terms ±
1

12
𝑥4 between the components 

𝑢0(𝑥) and 𝑢1(𝑥). By canceling the noise term from the 𝑢0(𝑥), the non-canceled term 

gives the exact solution 𝑢(𝑥) = 𝑥2, that satisfies the given equation. 

Example 5.7 

Use the modified Adomian decomposition method to solve the following Volterra-

Fredholm integral equation: 

𝑢(𝑥) = cos 𝑥 − sin 𝑥 − 2 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

𝜋

0
         (5.14) 

Using the modified decomposition method gives the recurrence relation: 

𝑢0(𝑥) = cos 𝑥 

𝑢1(𝑥) = − sin 𝑥 − 2 + ∫ 𝑢0(𝑡)𝑑𝑡

𝑥

0

+ ∫(𝑥 − 𝑡)𝑢0(𝑡)𝑑𝑡

𝜋

0

= 0 

Consequently, the exact solution is given by: 𝑢(𝑥) = cos 𝑥. 

Example 5.8 

Use the modified Adomian decomposition method to solve the following Volterra-

Fredholm integral equation: 

𝑢(𝑥) = 3𝑥 + 4𝑥2 − 𝑥3 − 𝑥4 − 2 + ∫ 𝑡𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑡𝑢(𝑡)𝑑𝑡

1

−1
         (5.15) 

Using the modified decomposition method gives the recurrence relation: 

𝑢0(𝑥) = 3𝑥 + 4𝑥2 − 𝑥3 

𝑢1(𝑥) = −𝑥4 − 2 + ∫ 𝑡𝑢0(𝑡)𝑑𝑡

𝑥

0

+ ∫ 𝑡𝑢0(𝑡)𝑑𝑡

1

−1

= −
2

5
−

1

5
𝑥5 + 𝑥3 

Canceling the noise term −𝑥3 from 𝑢0(𝑥) gives the exact solution 𝑢(𝑥) = 3𝑥 + 4𝑥2 

 

Exercises 5.2 

Use the modified decomposition method to solve the following Volterra-Fredholm 

integral equations: 

 

1. 𝑢(𝑥) = 𝑥 −
1

3
𝑥3 + ∫ 𝑡𝑢(𝑡)𝑑𝑡

𝑥

0
+ ∫ 𝑡2𝑢(𝑡)𝑑𝑡

1

−1
 

2. 𝑢(𝑡) = sec2 𝑥 − tan 𝑥 − 1 + ∫ 𝑢(𝑡)𝑑𝑡
𝑥

0
+ ∫ 𝑢(𝑡)𝑑𝑡

𝜋

4
0

 

3. 𝑢(𝑥) = 𝑥3 −
9

20
𝑥5 −

1

4
𝑥 +

1

5
+ ∫ (𝑥 + 𝑡)𝑢(𝑡)𝑑𝑡

𝑥

0
+ ∫ (𝑥 − 𝑡)𝑢(𝑡)𝑑𝑡

1

0
 

 


