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Quotient Group

Here is a fundamental construction of a new group from a given group.

Theorem (1): Let G/K denote the family of all the cosets of a a K
bK = abK

Definition (2): The group G/K is called the quotient group; when G
is finite, its order G/K is the index [G:K] (presumablygihis is the

reason quotient groups are so-called).
We can now prove the converse of Proposiigo @
Proposition (3): Every normal subgroup K is the

kernel of some homomorphism. %

Proof:

Define the natural map n: G - G/K bN ) =a K. With this
notation, the formula a K bK =abK ear be rewritten as n(a)n(b)
= m(ab); thus, « is a (surjective) homomorphism. Since K is the
identity element in ,

ker 1= {aﬁ-(a)—K}— facG:aK=K}=K
Isomorp&{he rems

& ng theorem shows that every homomorphism
gives\gise to an isomorphism and that quotient groups are
merely constructions of homomorphic images.

First Isomorphism Theorem
If f: G—>H is a homomorphism, then:

G/kerf=imf

Where im f = f(H). In more detail, if we put ker f = K , then the function ¢ :
G/K — f(H) is given by:

¢: a K r— f(a) for each acG, is an isomorphism.



Proof:

It is clear that ker f is a normal subgroup of G, and we can easily show that ¢ is
well-defined. Let us now see that ¢ is a homomorphism. Since f is a
homomorphism and ¢(a K ) = f (a),

d(a K bK ) = ¢(abK ) = f (ab) = f (a) £ (b) = d(a K )d(bK ).

Also, ¢ is surjective and injective Therefore, ¢: G/K — im f is
an isomorphism.

Remark (2):

1. Here is a minor application of the first isomorphism thggrem. For any group
G, the identity function f: G — G is a surjective ho%%hism with ker f

{1}. By the first isomorphism theorem, we,ha
GH{1}=G m

2. Given any homomorphism f:G—H , one mediately ask
for its kernel and its image; the first gisom Ism theorem will
then provide an isomorphism

G/ ker f =zim f. Since there is no %ficant difference between
isomorphic groups, the first isomoﬁ)hism theorem also says that
there is no significant difference between quotient groups and
homomorphic in‘es.

Proposition (3)¢
1.IfHa

ubgroups of group G, and if one of them is
roup, then HK is a subgroup of G. Moreover,

and K are normal subgroups, then HK is a normal subgroup.
Proof:

1. Assume first that K is normal in G. We claim that HK = KH. Ifhk e
HK, then:

hk = hkh™'h = k; heKH
where k; = hkh™!, then k; e K, because K is normal subgroup

Hence, HK = KH. For the reverse inclusion, write kh = hh~'kh =
hk, € HK, where k, = h-*kh.



(Note that the same argument shows that HK = KH if H is
normal subgroup of G.

We now show that HK is a subgroup. Sincee e Hand e € K,
we havee=¢e - e € HK.

If hk € HK, then (hk) ! = k' h! € KH = HK. If hk, hik; €
HK, then h; ' kh; = ke € K and

Hkh1 k1 = hhl(hl_l khl)kl = (hh1 )(kekl) e HK.

Therefore, HK is a subgroup of G.
2. If g € G, then:

ghkg™ = (ghg ")(gkg™") € HK
Therefore, HK is normal in G. \%%
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