المحاضرة الرابعة Quotient Group

Here is a fundamental construction of a new group from a given group.

<u>Theorem (1)</u>: Let G/K denote the family of all the cosets of a a K bK = abK

Definition (2): The group G/K is called the quotient group; when G is finite, its order G/K is the index [G:K] (presumably this is the reason quotient groups are so-called).

We can now prove the converse of Proposition 2.91(ii).

<u>**Proposition (3):**</u> Every normal subgroup K of a group \tilde{G} is the kernel of some homomorphism.

Proof:

Define the natural map π : G \rightarrow G/K by $\pi(a) = a$ K. With this notation, the formula a K bK = abK can be rewritten as $\pi(a)\pi(b) = \pi(ab)$; thus, π is a (surjective) homomorphism. Since K is the identity element in G/K,

$$\ker \pi = \{a \in G : \pi(a) = K \} = \{a \in G : a K = K \} = K$$

Isomorphism Theorems

The following theorem shows that every homomorphism gives rise to an isomorphism and that quotient groups are merely constructions of homomorphic images.

First Isomorphism Theorem

If f: $G \rightarrow H$ is a homomorphism, then:

 $G/ \ ker \ f \cong im \ f$

Where im f=f(H). In more detail, if we put ker f=K , then the function $\phi:G/K\to f(H)$ is given by:

 ϕ : a K $r \rightarrow f(a)$ for each $a \in G$, is an isomorphism.

Proof:

It is clear that ker f is a normal subgroup of G, and we can easily show that ϕ is well-defined. Let us now see that ϕ is a homomorphism. Since f is a homomorphism and $\phi(a K) = f(a)$,

 $\phi(a K bK) = \phi(abK) = f(ab) = f(a) f(b) = \phi(a K)\phi(bK).$

Also, ϕ is surjective and injective Therefore, ϕ : G/K \rightarrow im f is an isomorphism.

Remark (2):

- **1.** Here is a minor application of the first isomorphism theorem. For any group G, the identity function f: $G \rightarrow G$ is a surjective homomorphism with ker f
 - $\{1\}$. By the first isomorphism theorem, we have

 $G/\{1\} \cong G$

2. Given any homomorphism $f:G \rightarrow H$, one should immediately ask for its kernel and its image; the first isomorphism theorem will then provide an isomorphism

G/ker f \cong im f. Since there is no significant difference between isomorphic groups, the first isomorphism theorem also says that there is no significant difference between quotient groups and homomorphic images.

Proposition (3)

1. If H and K are subgroups of group G, and if one of them is a normal subgroup, then HK is a subgroup of G. Moreover, HK = KH.

2. If both H and K are normal subgroups, then HK is a normal subgroup. **Proof:**

1. Assume first that K is normal in G. We claim that HK = KH. If $hk \in HK$, then:

$$hk = hkh^{-1}h = k_1 h \in KH$$

where $k_1 = hkh^{-1}$, then $k_1 \in K$, because K is normal subgroup

Hence, HK = KH. For the reverse inclusion, write $kh = hh^{-1}kh = hk_2 \in HK$, where $k_2 = h^{-1}kh$.

(Note that the same argument shows that HK = KH if H is normal subgroup of G.)

We now show that HK is a subgroup. Since $e \in H$ and $e \in K$, we have $e = e \cdot e \in HK.$

If $hk \in HK$, then $(hk)^{-1} = k^{-1} h^{-1} \in KH = HK$. If hk, $h_1k_1 \in HK$, then $h_1^{-1} kh_1 = ke \in K$ and

 $Hkh_1 k_1 = hh_1(h_1^{-1} kh_1)k_1 = (hh_1)(kek_1) \in HK.$

Therefore, HK is a subgroup of G.

2. If $g \in G$, then:

$$ghkg^{-1} = (ghg^{-1})(gkg^{-1}) \in HK$$

Therefore, HK is normal in G.

- **1.** D. M. Burton, Abstract and linear algebra, 1972.
- 2. Joseph J. Rotman, Advanced Modern Algebra, 2003.
- 3. John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, 2002.
- 4. Joseph A. Gallian, Contemporary Abstract Algebra, 2010.

