المحاضرة الرابعة

Sylow Theorems

First Sylow Theorem:

Let G be a finite group with o(G) = n and a prime number $p \mid n$, then G contains a Sylow P-group.

Example: If $o(G)=36=3^2.2^2$, then there exists a 3-Sylow subgroup H, with $O(H)=3^2=9.$

Second Sylow Theorem: Let G be a finite group, with o(G) = n and p be a prime number then:

- 1. All Sylow P-groups are conjugate.
- **2.** If t is the number of Sylow P-group, then there exist $s \ge 0$, ; t = 1 + s p.
- **3.** t divides O(G).

Proposition: A Sylow P-group H is a normal subgroup if and only if H is a unique P-group.

Remark: Any group G is said to be simple if it has no non-trivial normal subgroup.

(i.e. if H \triangle G, then either H = {e} or H = G).

Some Applications of Sylow Theorems:

In this section, we give the main applications of the Sylow theorem in the group theory.

Example: There is no simple group with order 200.

Proof: Let G be a group with $o(G) = 200 = 5^2 \cdot 2^3$.

G contains a Sylow 5-group say H and o(H) = 52 = 25 (by First Sylow Theorem).

Let t be the number of Sylow 5-group, then t = 1 + 5k for $k \ge 0$.

Also, t | 200 (by Second Sylow Theorem). Now,

There exists a unique Sylow 5-group H and hence H is normal. so G is not simple.

Now, group G contains a Sylow 2-group with o(K) = 23 = 8 (by First Sylow Theorem) and if r is the number of Sylow 2-group, then r = 1 + 2k for $k \ge 0$. Also, $r \setminus 200$ (by Second Sylow Theorem). Now,

 $r = \{1, 5, 25\}$, this means there exists a three Sylow 2-group K and hence we cannot know if K is unique or not.

We cannot know if K is normal or not.

Remark:

In the previous example if group G is abelian, then K is normal and hence K is unique (by Second Sylow Theorem).

Example:

There is no simple group with order 30.

Proof: H.W

Definition. (Decomposable)

Let H and K be normal subgroups of the group G. Then G is said to be the internal direct product of H and K if :

- **1.** H Δ G and K Δ G
- **2.**G = HK
- **3.** $H \cap K = \{e\}, \text{ then } G \approx H \times K$

Example: Every group G with order 35 is decomposable and cyclic.

Proof: Let G be a group with o(G) = 35. By Sylow Theorem, G contains a normal subgroup H with o(H) = 5 and a normal subgroup K with o(K) = 7. In the same way of the previous example, G H × K.

o(H) = 5 and o(K) = 7 (prime numbers), then each of H and K is cyclic. Let H = (x) and K = (y) for x H and y K. Hence x5 = e and y7 = e. Claim that H × K = (x, y). For that: Since each of 5 and 7 is a prime number, then there is t and s such that 5t + 7s = 1. Let (xi, yj) H ×K; $0 \le i \le 6, 0 \le j \le 4$. Since $i - j = (5t + 7s)(i - j) \rightarrow 5t(i - j) + j = 7s(j - i) + i = m$. xm = xst(i - j) + j = (x5)6-j × j = exi = xi and ym = yi. $(xi, yj) = (xm, ym) = (x, y)m \rightarrow H \times K = (x, y)$ and hence $H \times K$ is cyclic.

Remark: Let G be a finite group with order pn and n = 1, 2, 3, ... then: **1.** $o(Z(G)) \neq p^{n-1}$

2. Every subgroup H with $o(H) = p^{n-1}$ is normal.

Exercises

- 1. Every group of order 45 is not simple, abelian and decomposable.
- 2. Every group of order 63 is not simple.
- **3.** Every group of order 77 is cyclic, abelian and decomposable.
- **4.** Show that the group order 30 is not simple.

REFERENCES

- **5.** [1] Chase J. and Brigitte S., Group Theory in Chemistry, Amajor Qualifying Project, Worcester Polytechnic Institute, 2008.
- 6. [2] D.M. Burton, Abstract and Linear Algebra, 1972.
- 7. [3] Joseph J. Rotman, "A First Course in Abstract Algebra with Applications", 2006.
- **8.** [4] John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, 2002.
- 9. [5] Joseph A. Gallian, "Contemporary Abstract Algebra", 2010.
- 10.[6] Thomas W. Judson, "Abstract Algebra", Theory and
- 11. Applications, 2009.
- 12.[7] M.S.Dresselhous, Applications of Group Theory to The Physics of Solid.