المحاضرة الثانية P- Groups

Definition 1: Let p be a prime number. A group G is said to be a **P-group** if the order of each element of G is some power of p (not necessarily the same power).

Examples 2:

- **1.** $o(S3) = 6 = 2.3$. It is not P-group, because S3 cannot be written as p^k for $k =$ $0, 1, 2, \ldots$).
- **2.** If $O(G)=16$, then G is P-group. Why?
- **3.** $G = \{e\}$, then $o(G) = p^0$ for each prime number p.

- **Proof:** Let H be a subgroup of a P-group G. Then $o(G) = p^k$, $k = 1,2,3,...$ By Lagrange's theorem, $o(H)/O(G)$. So, $O(H) = p^r$, $0 \le r \le k$. Hence, H is a P-group.
	- **2.** Let G be a P-group and f: $G \rightarrow G'$ be a homomorphism group. Then, f(G) is P-group.

Proof:

Since G is p- group, then $G = p^k$, k=0, 1, 2, 3, ...) and kerf subgroup of G, then kerf is P-group, so that $o(\text{ker} f) = p^r$, $0 \le r \le k$). By 1st iso th., $f(G) \le G\text{ker} f$. So, $o(f(G)) = o(G)O(ker f) = P^{k-r}$ and cleary $0 \le k-r \le k$. This implies that $f(G)$ is a Pgroup.

Corollary 4: Let H be a normal subgroup of G. If G is P-group, then both H and G/H are P-groups.

The converse of the previous proposition is not true. The following proposition gives the necessary condition for the converse.

Proposition 5: If G is a finite group and H normal subgroup of G and both H and $G\$ H are P-groups, then G is P-group.

Proof: Since $O(G) = O(H)$. [G: H] = $O(H)$. O(G/H) Assume that $O(H)$ = p^r and $O(G/H)$ = p^s. This implies that $O(G) = p^{r+s}$ and r+s = 0, $1, 2, \ldots$. Then G is P-group.

From Corollary 9 and Proposition 10, we deduce the following.

Theorem 6: Let G be a finite group and H is a normal subgroup of G then both H and G\H are P-groups if and only if G is P-group.

Remake 7: If G_1 , G_2 are P-group, then so is $G_1 \times G_2$.

Proof: It is obvious

Theorem 8: Let G be a finite group. Then G is P-group if and only if the order of each element of G is a power of p.

Proof: For the First direction, Let $x \in G$. Then $o(x) = o((x))$ $((x) =$ is the cyclic group generated by x).

Now, since (x) subgroup of G, then (x) is a P-group (by Remark $*$).

Each element of G is a power of p.

Conversely, suppose that each element of G is a power of p, and to prove that G is a P-group. Suppose G is not P-group. So, there is a prime number q, $q \neq p$; such that q divides o(G). By Cauchy theorem, G contains a subgroup of order q, and hence G contains an element of order $q \neq p$ C! (since each element of G is a power of p).

Examples 14:

- **1.** If $G = S3$, then $o(S3) = 6 = 2.3$. So the order of each element is not power of p. Hence S3 is not P-group.
- **2.** If $G = 8$. Then $o(8) = 23$. The subgroup of 8 is $\{\}$, $\{\}$, $\{\}$, $\{\}$, $\{\}$ and 8. Hence each element of 8 is a power of 2.

REFERENCES

[1] Chase J. and Brigitte S., Group Theory in Chemistry, Amajor Qualifying Project, Worcester Polytechnic Institute, 2008.

[2] D.M. Burton, Abstract and Linear Algebra, 1972.

[3] Joseph J. Rotman, "A First Course in Abstract Algebra with Applications", 2006.

[4] John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, 2002.

[5] Joseph A. Gallian, "Contemporary Abstract Algebra", 2010.

[6] Thomas W. Judson, "Abstract Algebra", Theory and

Applications, 2009.

[7] M.S.Dresselhous, Applications of Group Theory to The Physics of Solid.